Skewness of a random variable

- Want to quantify how asymmetric is the distribution around the mean?
- Need any odd moment: $E[(X-\mu)^{2n+1}]$
- Cannot do it with the first moment: $E[X-\mu]=0$
- Normalized 3-rd moment is skewness: $\gamma_1 = E[(X \mu)^3/\sigma^3]$
- Skewness can be infinite if X takes unbounded positive integer values and the tail P(X=x) ≥c/x⁴ for large x

Geometric mean of a random variable

- Useful for very broad distributions (many orders of magnitude)?
- Mean may be dominated by very unlikely but very large events. Think of a lottery
- Exponent of the mean of log X:
 Geometric mean=exp(E[log X])
- Geometric mean usually is not infinite

Summary: Parameters of a Probability Distribution

- Probability Mass Function (PMF): f(x)=Prob(X=x)
- Cumulative Distribution Function (CDF): F(x)=Prob(X≤x)
- Complementary Cumulative Distribution Function (CCDF):
 F_>(x)=Prob(X>x)
- The mean, $\mu = E[X]$, is a measure of the center of mass of a random variable
- The variance, $V(X)=E[(X-\mu)^2]$, is a measure of the dispersion of a random variable around its mean
- The standard deviation, $\sigma = [V(X)]^{1/2}$, is another measure of the dispersion around mean. Has the same units as X
- The skewness, $\gamma_1 = E[(X-\mu)^3/\sigma^3]$, a measure of asymmetry around mean
- The geometric mean, exp(E[log X]) is useful for very broad distributions

A gallery of useful discrete probability distributions

Discrete Uniform Distribution

- Simplest discrete distribution.
- The random variable X assumes only a finite number of values, each with equal probability.
- A random variable X has a discrete uniform distribution if each of the n values in its range, say $x_1, x_2, ..., x_n$, has equal probability.

$$f(x_i) = 1/n$$

Uniform Distribution of Consecutive Integers

• Let X be a discrete uniform random variable all integers from a to b (inclusive). There are b-a+1 integers. Therefore each one gets: f(x) = 1/(b-a+1)

Its measures are:

$$\mu = E(x) = (b+a)/2$$

$$\sigma^2 = V(x) = [(b-a+1)^2-1]/12$$

Note that the mean is the midpoint of a & b.

x = 1:10

What is the behavior of its Probability Mass Function (PMF): P(X=x)?

- A. does not change with x=1:10
- B. linearly increases with x=1:10
- C. linearly decreases with x=1:10
- D. is a quadratic function of x=1:10

x = 1:10

What is the behavior of its Cumulative Distribution Function (CDF): P(X≤x)?

- A. does not change with x=1:10
- B. linearly increases with x=1:10
- C. linearly decreases with x=1:10
- D. is a quadratic function of x=1:10

x = 1:10

What is its mean value?

A. 0.5

B. 5.5

C. 5

D. 0.1

$$x = 1:10$$

What is its skewness?

- A. 0.5
- B. 1
- C. 0
 - D. 0.1

An example of the uniform distribution

Cycle threshold (Ct) value in COVID-19 infection

What is the Ct value of a PCR test? Ct = const - log2(viral DNA concentration)

Why Ct distribution should it be uniform?

Examples of uniform distribution: Ct value of PCR test of a virus

■Figure 3■ Distribution of cycle threshold (CT) values. The total number of specimens with indicated CT values for Target 1 and 2 are plotted. The estimated limit of detection for (A) Target 1 and (B) Target 2 are indicated by vertical dotted lines. Horizontal dotted lines encompass specimens with CT values less than 3× the LoD for which sensitivity of detection may be less than 100%. This included 19/1,180 (1.6%) reported CT values for Target 1 and 81/1,211 (6.7%) reported CT values for Target 2. Specimens with Target 1 or 2 reported as "not detected" are denoted as a CT value of "0."

Distribution of SARS-CoV-2 PCR Cycle Threshold Values Provide Practical Insight Into Overall and Target-Specific Sensitivity Among Symptomatic Patients

Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L Faron, PhD, L Silvia Munoz-Price, MD, PhD, Nathan A Ledeboer, PhD *American Journal of Clinical Pathology*, Volume 154, Issue 4, 1 October 2020,

https://academic.oup.com/ajcp/article/154/4/479/5873820

Why should we care?

 High Ct value means we identified the infected individual early, hopefully before transmission to others

 When testing is mandatory, and people are tested frequently – Ct value is skewed towards high values

Matlab exercise: Uniform distribution

- Generate a sample of size 100,000 for uniform random variable X taking values 1,2,3,...10
- Plot the <u>approximation</u> to the probability mass function based on <u>this sample</u>
- Calculate mean and variance of this sample and compare it to infinite sample predictions:
 E[X]=(a+b)/2 and V[X]=((a-b+1)²-1)/12

Matlab template: Uniform distribution

- b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
- Stats=100000; % sample size to generate
- r1=rand(Stats,1);
- r2=floor(??*r1)+??;
- mean(r2)
- var(r2)
- std(r2)
- [hy,hx]=hist(r2, 1:10); % hist generates histogram in bins 1,2,3...,10
- % hy number of counts in each bin; hx coordinates of bins
- p_f=hy./??; % normalize counts to add up to 1
- figure; plot(??,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot the PMF

Matlab exercise: Uniform distribution

- b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
- Stats=100000; % sample size to generate
- r1=rand(Stats,1);
- r2=floor(b*r1)+a;
- mean(r2)
- var(r2)
- std(r2)
- [hy,hx]=hist(r2, 1:10); % hist generates histogram in bins 1,2,3...,10
- % hy number of counts in each bin; hx coordinates of bins
- p_f=hy./sum(hy); % normalize counts to add up to 1
- figure; plot(hx,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot the PMF

Bernoulli distribution

The simplest non-uniform distribution

p – probability of success (1)

1-p – probability of failure (0)

$$f(x) = P(X = x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

Jacob Bernoulli (1654-1705) Swiss mathematician (Basel)

- Law of large numbers
- Mathematical constant e=2.718...

Bernoulli distribution

$$f(x) = P(X = x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0(1 - p) + 1(p) = p$$

$$Var(X) = E(X^{2}) - (EX)^{2} = [0^{2}(1 - p) + 1^{2}(p)] - p^{2} = p - p^{2} = p(1 - p)$$