Skewness of a random variable

Want to quantify how asymmetric is the
distribution around the mean?

Need any odd moment: E[(X-u)?"*]
Cannot do it with the first moment: E[X-u/=0
Normalized 3-rd moment is skewness: y,=E[(X-

u)P/o’]
Skewness can be infinite if X takes

unbounded positive integer values and the tail
P(X=x) >c/x*for large x



Geometric mean of a random variable

* Useful for very broad distributions
(many orders of magnitude)?

* Mean may be dominated by very unlikely
but very large events. Think of a lottery

* Exponent of the mean of log X:
Geometric mean=exp(E[log X])

* Geometric mean usually
is not infinite



Summary: Parameters of a Probability Distribution

Proba
Cumu

Comp
F.(x)=

oility Mass Function (PMF): f(x)=Prob(X=x)
ative Distribution Function (CDF): F(x)=Prob(X<x)
ementary Cumulative Distribution Function (CCDF):

Prob(X>x)

The mean, u=£E[X], is a measure of the
center of mass of a random variable

The variance, V(X)=E[(X- u)?], is a measure of the dispersion
of a random variable around its mean

The standard deviation, o=[V(X)]*/2, is another measure of
the dispersion around mean. Has the same units as X

The skewness, y,=E[(X-11)?/0°], a measure of asymmetry
around mean

The geometric mean, exp(E[log X]) is useful for very broad
distributions
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A gallery of useful
discrete probability distributions



Discrete Uniform Distribution

* Simplest discrete distribution.

 The random variable X assumes only a finite
number of values, each with equal probability.

* Arandom variable X has a discrete uniform
distribution if each of the n values in its range,
say X,, X,, ..., X,, has equal probability.

fix)=1/n



Uniform Distribution of
Consecutive Integers

* Let X be a discrete uniform random variable all
integers from a to b (inclusive). There are
b—a +1 integers. Therefore each one gets:

flx) = 1/(b-a+1)
* Its measures are:
u = E(x) = (b+a)/2
o? = V(x) = [(b-a+1)?-1]/12
Note that the mean is the midpoint of a & b.



A random variable X has the same
probability for integer numbers
x=1:10
What is the behavior of its Probability
Mass Function (PMF): P(X=x)?

B. linearly increases with x=1:10

C. linearly decreases with x=1:10
D. is a quadratic function of x=1:10
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A random variable X has the same
probability for integer numbers
x=1:10
What is the behavior of its Cumulative
Distribution Function (CDF): P(X<x)?

A. does not change with x=1:10

B. linearly increases with x=1:10
C. linearly decreases with x=1:10
D. is a quadratic function of x=1:10

Get your i-clickers .



A random variable X has the same

probability for integer numbers
X =1:10
What is its mean value?

A. 0.5
B. 5.5

Get your i-clickers



A random variable X has the same

probability for integer numbers
X =1:10
What is its skewness?

Get your i-clickers



An example of the uniform
distribution

Cycle threshold (Ct) value in
COVID-19 infection



What is the Ct value of a PCR test?
Ct = const — log2(viral DNA concentration)







Why Ct distribution should it be uniform?
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Examples of uniform distribution:
Ct value of PCR test of a virus
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BFigure 30 Distribution of cycle threshold (CT) values. The total number of specimens with indicated CT values for Target

1 and 2 are plotted. The estimated limit of detection for (A) Target 1 and (B) Target 2 are indicated by vertical dotted lines.
Horizontal dotted lines encompass specimens with CT values less than 3x the LoD for which sensitivity of detection may
be less than 100%. This included 19/1,180 (1.6%) reported CT values for Target 1 and 81/1,211 (6.7 %) reported CT values for

Target 2. Specimens with Target 1 or 2 reported as “not detected” are denoted as a CT value of “0."

Distribution of SARS-CoV-2 PCR Cycle Threshold Values Provide Practical Insight Into Overall
and Target-Specific Sensitivity Among Symptomatic Patients
Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L
Faron, PhD, L Silvia Munoz-Price, MD, PhD, Nathan A Ledeboer, PhD American Journal of
Clinical Pathology, Volume 154, Issue 4, 1 October 2020,
https://academic.oup.com/ajcp/article/154/4/479/5873820




Why should we care?

3191 individual positive tests
from Barak et al. Sci Transl Med. 2021
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Matlab exercise: Uniform distribution

* Generate a sample of size 100,000 for uniform
random variable X taking values 1,2,3,...10

 Plot the approximation to the
probability mass function based on
this sample

e Calculate mean and variance of this sample

and compare it to infinite sample predictions:
E[X]=(a+b)/2 and V[X]=((a-b+1)%-1)/12




Matlab template: Uniform distribution

b=10; a=1; % b= upper bound; a= lower bound (inclusive)
Stats=100000; % sample size to generate
rl=rand(Stats,1);

r2=floor(??*rl1)+??;

mean(r2)

var(r2)

std(r2)

[hy,hx]=hist(r2, 1:10); % hist generates histogram in bins
1,2,3...,10

% hy - number of counts in each bin; hx - coordinates of
bins

p_f=hy./??; % normalize counts to add up to 1

figure; plot(??,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot
the PMF



Matlab exercise: Uniform distribution

b=10; a=1; % b= upper bound; a= lower bound (inclusive)
Stats=100000; % sample size to generate
rl=rand(Stats,1);

r2=floor(b*rl)+a;

mean(r2)

var(r2)

std(r2)

[hy,hx]=hist(r2, 1:10); % hist generates histogram in bins
1,2,3...,10

% hy - number of counts in each bin; hx - coordinates of
bins

p_f=hy./sum(hy); % normalize counts to add up to 1

figure; plot(hx,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot
the PMF



Bernoulli distribution

The simplest non-uniform distribution
p — probability of success (1)
1-p — probability of failure (0)

B N it x=1
f(x)_P(X_x)_{l—p if x=20

Jacob Bernoulli
(1654-1705)
Swiss mathematician (Basel)

* Law of large numbers
e Mathematical constant e=2.718...







Bernoulli distribution

B N N ifx=1
f(x)_P(X_x)_ll—p it x=20

EX)=0xPX=0)+1xPX=1)=01-—p)+1(p) =p

Var(X) = E(X*) — (EX)* = [0°(1 —p) + 1*(p)] = p* =p — p* = p(1 —p)





