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Two variable samples

Xenon
0.000009%

Neon
0.0018%

Hydrogen
0.00005%

Helium
0.0005%

Krypton
0.0001%

Carbon dioxide
0.038%

Oxygen can be distilled from the air

Hydrocarbons need to be filtered out
or the whole thing would go kaboom!!!

When more hydrocarbons were removed,
the remaining oxygen stays cleaner

Except we don’t know how dirty was the air
to begin with

Table 11-1  Oxygen and Hydrocarbon Levels
Observation Hydrocarbon Level Purity
Number x(%) v (%)
| 0.99 90.01
2 1.02 89.05
3 1.15 91.43
- 1.29 93.74
3 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42
10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 111 89.85
16 1.20 90.39
17 1.26 093.25
18 1.32 93.41
19 1.43 9498
20 0.95 87.33




Linear regression

The simple linear regression model 1s given by
Y=B+B,X+e=Y +¢
¢ 1s the random error term

slope [; and 1ntercept [ of the line are called
regression coefficients

Note: V', Y, X and ¢ are random variables
The minimal assumption: E(¢ | x)=0 -
E(Y| x)=py + p1x + E(e | x) =Ly + [1x



Y= P X+ €
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Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon
level from Table 11-1.
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Method of least squares

- The method of least squares 1s used to estimate the

parameters, 3, and 3, by minimizing the sum of the
squares of the vertical deviations in Figure 11-3.

Figure 11-3 Deviations of the
data from the estimated
regression model.
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Figure 11-3 Deviations of the data from the
estimated regression model.



Traditional notation

Definition

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7 — B> (11-7)

where vy = (1/n) 2 ,—; y; and X = (1/n) 2, x;.




Connection to Cov(X,Y)/Var(X) result

Definition

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7 — B> (11-7)

. (35 Cov (Y, )

o \i=l
-~ —  (11-8)
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where vy = (1/n) 2 ,—; y; and X = (1/n) 2, x;.




Different types of y

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7— B> (11-7)
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———— (11-8)
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where v = (1/n) 2, yv; and X = (1/n) 2, x..




The analysis of variance identity 1s

D=V =X@ =+ X i— ) (11-24)
i=1 i=1 i=1
Symbolically,
58y =SS, + SS: (11-25)
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11-7: Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

VERY COMMONLY USED
* The quantity
) S5 _ | _ 5%
= SSp | SSt

1s called the coefficient of determination and 1s often
used to judge the adequacy of a regression model.
e <R2<1;
« We often refer (loosely) to R? as the amount of
variability in the data explained or accounted for by the
regression model.
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11-2: Simple Linear Regression

Estimating o 2

An unbiased estimator of 6,2 is

; SSE
€ n— 2

(11-13)

where SS; can be easily computed using

SSg = SSr — B1Sy

(11-14)
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Multiple Linear Regression

(Chapters 12-13 in
Montgomery, Runger)



12-1: Multiple Linear Regression Model

12-1.1 Introduction

* Many applications of regression analysis
iInvolve situations in which there are more than
one regressor variable X, used to predict Y.

* Aregression model then is called a multiple
regression model.



Multiple Linear Regression Model

Y'=PBg *PiXg+ P X+ PaXg+... B X+ e

One can also use powers and products of other variables
or even non-linear functions like exp(x:) or log(x.)
instead of X5,... X, .

Example: the general two-variable quadratic
regression has 6 constants:

Y=Bo + Bixg+ By X+ Ba(xq)2 + By(X2)? + Ps (X4xp) + €

15



Logistic Regression

P(y=1) = a(x1*wl + x2*w?2

+ b)
b
x1 wl l
\

t —o— P(y=
/ 1)
p) w2

X



How to know where to stop
adding new variables or
powers of old variables?



A Regression Problem

y = f(x) + noise
Can we learn f from this data?

Let’s consider three methods...

Copyright © Andrew W. Moore



Linear Regression

Copyright © Andrew W. Moore



Quadratic Regression

Copyright © Andrew W. Moore



Join-the-dots

Also known as piecewise
linear nonparametric
regression if that makes
you feel better

Copyright © Andrew W. Moore



Which is best?

Why not choose the method with the best fit to the

data?

Copyright © Andrew W. Moore



What do we really want?

Why not choose the method with the best fit to the

data?

“How well are you going to predict future data drawn from
the same distribution?”

Copyright © Andrew W. Moore



The test set method

Copyright © Andrew W. Moore

1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set



The test set method

1. Randomly choose
) 30% of the data to
be in a test set
2. The remainder is a
training set
3. Perform your
regression on the
X —» training set

(Linear regression example)

Copyright © Andrew W. Moore



The test set method

(Linear regression example)
Mean Squared Error=2.4

Copyright © Andrew W. Moore

1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



The test set method

—_—

X —

(Quadratic regression example)
Mean Squared Error =0.9

Copyright © Andrew W. Moore

1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



The test set method

(Join the dots example)
Mean Squared Error = 2.2

Copyright © Andrew W. Moore

1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



Double descend- the main reason modern
Machine Learning works so well
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12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

Suppose the model relating the regressors
to the response is

yi:[30+lei1+ﬁ2.xi2+"‘+ﬁkxl'k+8i i:1,2,...,n

In matrix notation this model can be written as

y=XB+¢ (12-6)



12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

where
| 1 x X o x| By | En
1 x X cee X €
y = y.z X=| .21 gz %k B = B:I and €= :2

Vn 1 Xnl Xn2 T Xk Bk Sy






12-1.3 Matrix Approach to Multiple Linear Regression

We wish to find the vector B that minimizes the sum of
squares of error terms:
n

L= Y & =ce= (y - XB)' (y — Xp)
1=1
oL

0=0= X - XP)-—X'y +(X'X)B

The resulting least squares estimate is

B=XXT"Xy o
/) (\\
/41/)6{/’02’ @F V///;V—(X) A"““’“Z O} Co [X/Y)






Multiple Linear Regression Model

A —
B — (X!X)—l Xry —M | S ’.Q;Z\‘(
' \

j=XPp=X(X'X)"'xy, W

y=Hy, and e=(I—H)y. ‘L
Aot XCE ) Ao

\/1@*9,/3 2 A or -6 orVHA«DW“Jf S;V‘C‘e
(7’ 7- 44) 0 L

*H(I H H - H? = H -H =0.



12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Unbiased estimators:

E(B) = E[(XX)7'X"Y]
= E[(X'X)"'X'(XB + €]
= E[(X'X)7IX'Xp + (X'X)"'X'€]

&

Covariance Matrix of Estimators:

{:--I i '[-III 1 '[-I| |2
C = [?{"}{:]_' — "f_-.“;. Ir-:-'|| '[-'|_1-
| Coo Gy Coo

36



12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Individual variances and covariances:

V(B) =0°Cy j=0,1,2

l;;‘fr‘-,'lzgj., El’,r — LTE(_-I{'J,'-. ] —;_'EJ-’

In general,

cov(iP) = (X' X) ' =6 C
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12-1: Multiple Linear Regression Models

Estimating error variance ¢ 2

An unbiased estimator of error variance G, is

n

2
*f—fE‘r—SSE 12-16
Ug_n—p_ﬂ—p (12-16)

Here p=k+1 for k-variable multiple linear regression
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R% and Adjusted R?

The coefficient of multiple determination R?

LSS S
R=%,"17755,
The adjusted R?is A\
SSgf(n — p) 22
2 _ 1 _ — )

« The adjusted R~ statistic penalizes adding terms to the

MLR model.
* It can help guard against overfitting (including

regressors that are not really useful) .



How to know where to stop
adding variables?

* Adding new variables x. to MLR
watch the adjusted R?

* Once the adjusted R?
no longer increases = stop.
Now you did the best you can.



Matlab exercise

Every group works with

g0=2907;, g1=1527; g2=2629; g3=2881;
g4=1144; g5=1066;

Compute Multiple Linear Regression (MLR):

where
y=exp_t (g0); x1=exp_t (g1); x2= exp_t (g2);

How much better the MLR did compared to the
Single Linear Regression (SLR)?

Continue increasing the number of genes in x
until R_adj starts to decrease



How I did it

g0=2907; gl=1527; g2=2629; g3=2881;g4=1144; g5=1066;
y=exp t(g0,:)’;

%% first use one x to predict y
x=exp t(gl,:)"';

figure; plot(x,y, 'ko')
Im=fitlm(x,y)

y fit=1lm.Fitted;

hold on;

plot(x,1lm.Fitted, 'r-") ;

%% now use 2 x's to predict y
x=[exp t(gl,:)', exp t(g2,:)"'];
Im2=fitlm(x,y)

y fit=1lm2.Fitted;

hold on; plot(x(:,1),y fit,'gd’);
%% now use m x's to predict y
corr matrix=corr(exp t');
g0=2907;

[u v]=sort(corr matrix(g0,:), 'descend’);
x=[exp t(v(2:m+1l),:)'];
Im3=fitlm(x,y)

y fit=1lm3.Fitted;

plot(x(:,1),y fit,'s");
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