Important terms & concepts for
discrete random variables

Probability Mass Function (PMF)
Cumulative Distribution Function (CDF)

Complementary Cumulative Distribution
Function (CCDF)

Expected value \ Boldface and
Mean underlined are the

] same for continuous
Variance distributions

Standard deviation
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What distributions we learn

Uniform distribution

Bernoulli distribution/trial
Binomial distribution

Poisson distribution
Geometric distribution
Negative binomial distribution



Why do we need to know
these simple distributions?



Ways to use statistics

* To process your experimental data

— What do you need? Mean, Variance, Standard
deviation. No need to know any textbook distributions

* To plan experiments

— Need to know distributions, e.g., Poisson to plan how
much redundancy to use for genome assembly

* To learn biological processes behind your data

— Need to know distributions to compare empirical
distributions in your data to what you expect based on
a simple hypothesis



Uniform distribution



Why Ct distribution should it be uniform?
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Examples of uniform distribution:
Ct value of PCR test of a virus
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BFigure 30 Distribution of cycle threshold (CT) values. The total number of specimens with indicated CT values for Target

1 and 2 are plotted. The estimated limit of detection for (A) Target 1 and (B) Target 2 are indicated by vertical dotted lines.
Horizontal dotted lines encompass specimens with CT values less than 3x the LoD for which sensitivity of detection may
be less than 100%. This included 19/1,180 (1.6%) reported CT values for Target 1 and 81/1,211 (6.7 %) reported CT values for

Target 2. Specimens with Target 1 or 2 reported as “not detected” are denoted as a CT value of “0."

Distribution of SARS-CoV-2 PCR Cycle Threshold Values Provide Practical Insight Into Overall
and Target-Specific Sensitivity Among Symptomatic Patients
Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L
Faron, PhD, L Silvia Munoz-Price, MD, PhD, Nathan A Ledeboer, PhD American Journal of
Clinical Pathology, Volume 154, Issue 4, 1 October 2020,
https://academic.oup.com/ajcp/article/154/4/479/5873820




Why should we care?

3191 individual positive tests
from Barak et al. Sci Transl Med. 2021

NN7r

Non- e High Ct value means
mandatory we identified the
. infected individual
Israel early, hopefully

Z: before transmission

, LT e to others

Ct value
MandO;tory * When testing is
tests at mandatory, and
people are tested

UluC 2021
= frequently — Ct value

is skewed towards
high values

15 20 25 30 35 40
mean Ct value



Negative binomial distribution



Statistics of cancer incidence vs age
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Can we prove/quantify it using statistics?

frequency

- 90% CI
- Observed
= 10% CI

y -

number of SNMs relative to median

2
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Assume: growth rate of cancer=(1+sd)'\'0'/(1+sp)'\I|O
n=10-%, Target,=1,400, Target =107, 5,=0.05 to 0.4, s,=0.001

sp/sd for breast: 0.0060+0.0010;

melanoma: 0.01620.003; lung: 0.0094+0.0093;

Blue - data on breast cancer: incidence; non-synonymous mutations



Poisson and Exponential
Distributions



F. William Studier

 Worked at Brookhaven
National Laboratory,
Long Island, NY since
1964

* Inventor of slab gel
electrophoresis in 1970
(not patented- back then no
incentive to patent work if
you are supported by the
US givernment)

* |nventor of T7 phage
expression system for fast
production of proteins.
Licensed by over 900
companies, generated over
S55 million for the lab
https://en.wikipedia.org/wi
ki/T7 expression system




K-12 vs BL21(DE3) strains of E. coli

K-12 and B genomes
diverged by ~0.7%

number of genes

0 10 20 30 20 50 60 70 80 %
number of SNPs per gene

Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF, J. Mol Biol. (2009)



# of SNPs per 1kb

Hichlv variable seoements are clhiistered
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Position along the basic genome (kb)

K-12 vs UMNF18 diverged by ~0.18%



Model of bacterial evolution by mutations
and homologous recombination

Strain 1 v
Strain 2
SNPs v VERERVERY. VERY.

* Mutation rate u (bp/generation)

* Recombination rate p (bp/generation)

* [,- average length of recombined segments

* O=2pN_ depending on N_— (effective) population size

* & transfer efficiency: Prob(successful transfer +
recombination): ~ exp(-6/6)
Dixit P, Pang TY, Studier FW, Maslov S, PNAS (2015); arXiv:1405.2548



Why exponential tail?

Empirical data for E. coli: Prob(8)=exp(-6/0.01)
Similar slopes in other species as distant as B. subtilis

Theory 1: PopGen 101 coalescence time distribution:

— Prob(T) ~ exp(-T/N,) =2
Prob(6) ~ exp(- 6/ 2uN,) = exp(- 6/6)
0 =2uN_~0.01, u~101% - N_~108

Theory 2: biophysics of homologous recombination:

— Requires perfect matches of L=30bp on each side 2
Prob(8)=(1- 6)*'=exp(-60°6)=exp(-6/0.016)=exp (-56/6)

Both mechanisms likely to work together:

biophysics of recombination affects the

effective population size




Continuous Probability
Distributions

Uniform Distribution



Continuous & Discrete Random
Variables

* Adiscrete random variable is usually integer
number
— N —the number of proteins in a cell

— D- number of nucleotides different between two
sequences

e A continuous random variable is a real number

— C=N/V —the concentration of proteins in a cell of
volume V

— Percentage D/L*100% of different nucleotides in
protein sequences of different lengths L
(depending on set of L's may be discrete but dense)

Sec 2-8 Random Variables

26



Probability Mass Function (PMF)

e X —discrete random
variable

* Probability Mass
Function: f(x)=P(X=x)
— the probability that
X is exactly equal to x

fx)
0.6561

0.291.6

0.0486

0.0036
®

/ 0-0001

0 1 2 3 4 «x

Probability Mass Function for
the # of mismatches in 4-mers

P(X=0)= 0.6561
P(X=1)= 0.2916
P(X=2)= 0.0486
P(X=3)= 0.0036
P(X=4)= 0.0001

2. P(X=x)= 1.0000

27



Probability Density Function (PDF)

Density functions, in contrast to mass functions,
distribute probability continuously along an interval

fix)
Pla < X < b)

a b X

Figure 4-2 Probability is determined from the area under f(x) from a to b.

Sec 4-2 Probability Distributions &

. 28
Probability Density Functions



Probability Density Function

For a continuous random variable X,
a probability density function is a function such that
(1) f(x) =0 means that the function is always non—negative.

@) j fG)dx =1

b
(3) Pla<X<b)= jf(x)dx = area under f(x)dx from a to b



Normalized histogram approximates PDF

A histogram is graphical display of data showing a series of adjacent
rectangles. Each rectangle has a base which represents an
interval of data values. The height of the rectangle is a number
of events in the sample within the base.

When base length is narrow, the histogram could be normalized to
approximate PDF (f(x)):
height of each rectangle =
=(# of events within base)/(total # of events)/width of its base.

11 ]]]] .

Normalized histogram approximates a probability density function.

f(x)

X



Cumulative Distribution Functions (CDF & CCDF)

The cumulative distribution function (CDF)
of a continuous random variable X is,

F(x)=P(X <x) = ff(u)du for —co<x <o (4-3)

One can also use the inverse cumulative distribution function
or complementary cumulative distribution function (CCDF)

F>(x)=P(X>x)=Jf(u)du for —oo < x < @

Definition of CDF for a continous variable is the same
as for a discrete variable

Sec 4-3 Cumulative Distribution Functions 31



Density vs. Cumulative Functions

* The probability density function (PDF) is the

derivative of the cumulative distribution
function (CDF).

dF dF.,
/@)= dgcx) - dix)

as long as the derivative exists.




Mean & Variance

Suppose X is a continuous random variable with
probability density function f(x). The mean or
expected value of X, denoted as u or E(X), is

u=EX)= f xf(x)dx (4—4)

— 00

The variance of X, denoted as V(X) or a?, is

0.0] oo

o2 = V(X) = f (x — W2f (X)dx = j X2 (x)dx — 2

— 00 — 00

The standard deviation of X is 0 = +/ 2.

Sec 4-4 Mean & Variance of a Continuous
Random Variable

33



Gallery of Useful
Continuous Probability Distributions



Continuous Uniform Distribution

* This is the simplest continuous distribution
and analogous to its discrete counterpart.

* A continuous random variable X with
probability density function

fix)=1/(b-a)fora<x<b (4-6)
. Compare to
discrete

1

b-a f(x) = 1/(b-a+1)

a b x

Figure 4-8 Continuous uniform PDF



Comparison between Discrete &
Continuous Uniform Distributions

Discrete:

 PMF: f(x) = 1/(b-0+1)
e Mean and Variance:

u = E(x) = (b+a)/2
o? = V(x) = [(b-a+1)?>-1]/12

Continuous:

 PMF: f(x) = 1/(b-a)
e Mean and Variance:

W = E(x) = (b+a)/2
o2 = V(x) = (b-0)?/12



X is a continuous random variable
with a uniform distribution
between 0 and 3.

What is Probability(X=1)?

A. 1/4

B. 1/3

C. 0O

D. Infinity

E. | have no idea

Get your i-clickers
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X is a continuous random variable
with a uniform distribution
between 0 and 3.

What is P(X=1)?

A. 1/4
B. 1/3

D. Infinity
E. | have no idea

Get your i-clickers
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X is a continuous random variable
with a uniform distribution
between 0 and 3.

What is P(X<1)?

A. 1/4

B. 1/3

C. 0

D. Infinity

E. I have no idea

Get your i-clickers

39



X is a continuous random variable
with a uniform distribution
between 0 and 3.

What is P(X<1)?

A. 1/4

B. 1/3

C.0
D. Infinity
E. | have no idea

Get your i-clickers
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Constant rate (Poisson) process
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Constant rate (AKA Poisson) processes

Let’s assume that proteins are produced by ribosomes in the
cell at a rate r per second.

The expected number of proteins produced in x seconds is r-x.

The actual number of proteins N, is a discrete random variable
following a Poisson distribution with mean r-x:

Pn(N,=n)=exp(-r-x)(rx)"/n!  E(N,)=rx

Why Discrete Poisson Distribution?

Divide time into many tiny intervals of length Ax <<1/r

The probability of success (protein production)
per internal is small: p_success=rAx <<1,

The number of intervals is large: n= x/Ax >>1
Mean is constant: r=E(N,)=p_success - n=rAx - x/Ax = r-x

In the limit Ax<<x, p_success is small and n is large, thus
Binomial distribution = Poisson distribution



Exponential Distribution Definition

Exponential random variable X describes interval
between two successes of a constant rate (Poisson)
random process with success rate r per unit interval.

The probability density function of Xis:
f(x)=re™ for 0<x<oo

Closely related to the discrete geometric distribution
f(x) = p(1-p)*t =p eV In(1-P=pePx for small p
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What is the interval X between two
successes of a constant rate process?

X is a continuous random variable
CCDF: P,(X>x) = P\(N,=0)=exp(-r-x).
— Remember: P, (N,=n)=exp(-r-x) (r-x)"/n!
PDF: f,(x)=-dCCDF,(x)/dx = r-exp(-r-x)

We started with a discrete Poisson distribution
where time x was a parameter

We ended up with a continuous exponential
distribution



Exponential Mean & Variance

[f the random variable X has an

exponential distri

bution with rater,

u=E(X) =% and o?=V(X) = l (4—15)

72

Note that, for the:

e Poisson distri

oution: mean= variance

* Exponential ¢
deviation = vari

istribution: mean = standard
ance®->

Sec 4-8 Exponential Distribution 50



