Important terms & concepts for discrete random variables

- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- <u>Complementary Cumulative Distribution</u>
 Function (CCDF)
- Expected value
- Mean
- Variance
- Standard deviation

Boldface and underlined are the same for continuous distributions

$$\binom{n}{x} p^x (1-p)^{n-x}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{n}{x} p^x (1-p)^{n-x}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{x-1}{r-1}(1-p)^{x-r}p^r$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\binom{x-1}{r-1}(1-p)^{x-r}p^r$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\frac{e^{-\lambda}\lambda^x}{x!}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

$$\frac{e^{-\lambda}\lambda^x}{x!}$$

- A. Uniform
- B. Binomial
- C. Geometric
- D. Negative Binomial
- E. Poisson

	Probability		
Name	Distribution	Mean	Variance
Discrete			
Uniform	$\frac{1}{n}$, $a \le b$	$\frac{(b+a)}{2}$	$\frac{(b-a+1)^2-1}{12}$
Binomial	$\binom{n}{x}p^x(1-p)^{n-x},$	np	np(1-p)
	$x = 0, 1, \dots, n, 0 \le p \le 1$		
Geometric	$(1-p)^{x-1}p,$ $x = 1, 2, \dots, 0 \le p \le 1$	1/ <i>p</i>	$(1-p)/p^2$
Negative binomial	$\binom{x-1}{r-1}(1-p)^{x-r}p^r$	r/p	$r(1-p)/p^2$
	$x = r, r + 1, r + 2, \dots, 0 \le p \le 1$		
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots, 0 < \lambda$	λ	λ

What distributions we learn

- Uniform distribution
- Bernoulli distribution/trial
- Binomial distribution
- Poisson distribution
- Geometric distribution
- Negative binomial distribution

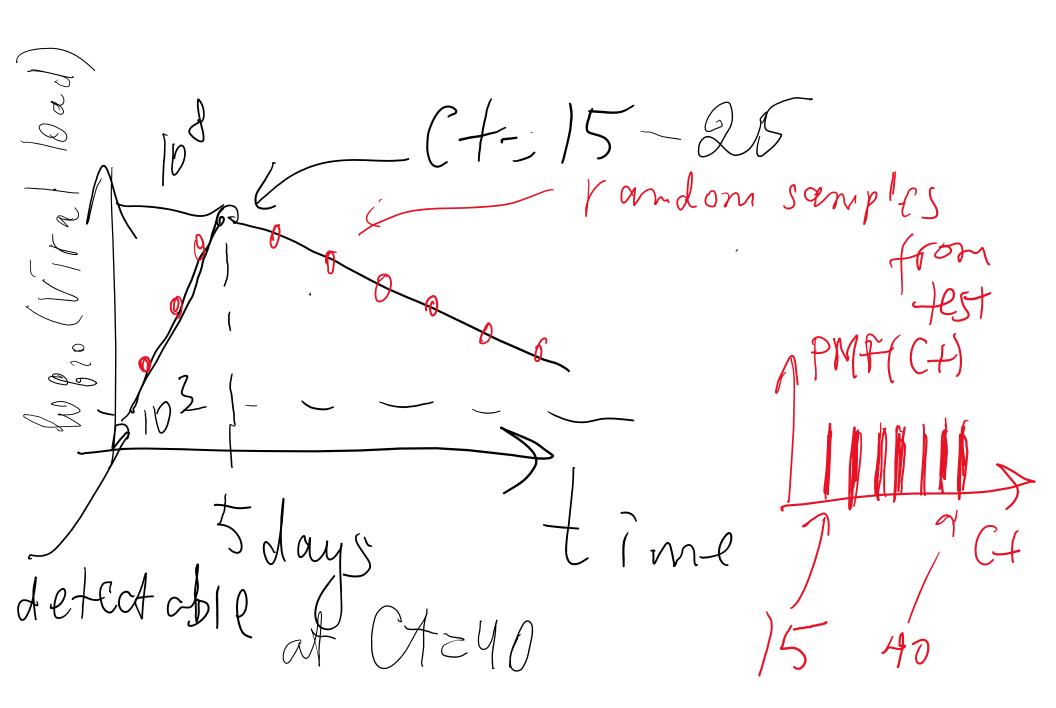
Why do we need to know these simple distributions?

Ways to use statistics

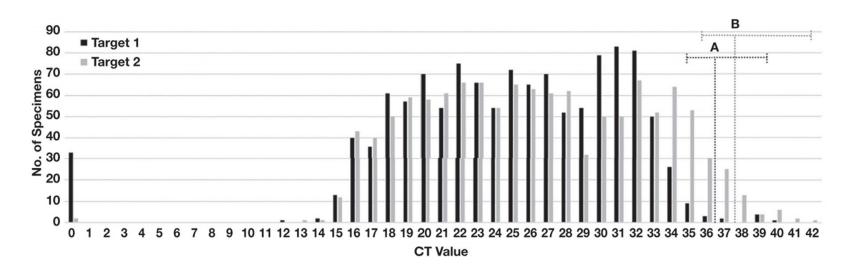
- To process your experimental data
 - What do you need? Mean, Variance, Standard deviation. No need to know any textbook distributions
- To plan experiments
 - Need to know distributions, e.g., Poisson to plan how much redundancy to use for genome assembly
- To learn biological processes behind your data
 - Need to know distributions to compare empirical distributions in your data to what you expect based on a simple hypothesis

Uniform distribution

Why Ct distribution should it be uniform?



Examples of uniform distribution: Ct value of PCR test of a virus



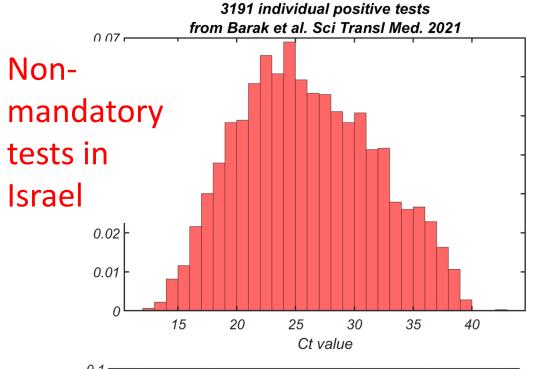
■Figure 3■ Distribution of cycle threshold (CT) values. The total number of specimens with indicated CT values for Target 1 and 2 are plotted. The estimated limit of detection for (A) Target 1 and (B) Target 2 are indicated by vertical dotted lines. Horizontal dotted lines encompass specimens with CT values less than 3× the LoD for which sensitivity of detection may be less than 100%. This included 19/1,180 (1.6%) reported CT values for Target 1 and 81/1,211 (6.7%) reported CT values for Target 2. Specimens with Target 1 or 2 reported as "not detected" are denoted as a CT value of "0."

Distribution of SARS-CoV-2 PCR Cycle Threshold Values Provide Practical Insight Into Overall and Target-Specific Sensitivity Among Symptomatic Patients

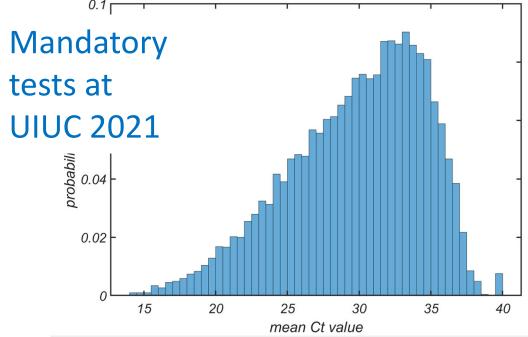
Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L Faron, PhD, L Silvia Munoz-Price, MD, PhD, Nathan A Ledeboer, PhD *American Journal of Clinical Pathology*, Volume 154, Issue 4, 1 October 2020,

https://academic.oup.com/ajcp/article/154/4/479/5873820

Why should we care?



 High Ct value means we identified the infected individual early, hopefully before transmission to others



 When testing is mandatory, and people are tested frequently – Ct value is skewed towards high values

Negative binomial distribution

Statistics of cancer incidence vs age

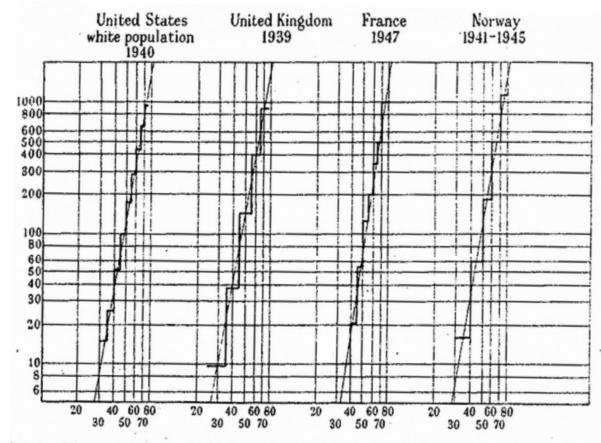


Fig. 1.—Diagram drawn to double logarithmic (log/log) scale showing the cancer death-rate (in the case of the United Kingdom, the carcinoma death-rate) in males at different ages. Deaths per 100,000 males are shown on the vertical scale, age figures on the horizontal scale.

Multi-mutation theory of cancer: Carl O. Nordling (British J. of Cancer, March 1953):

Cancer death rate

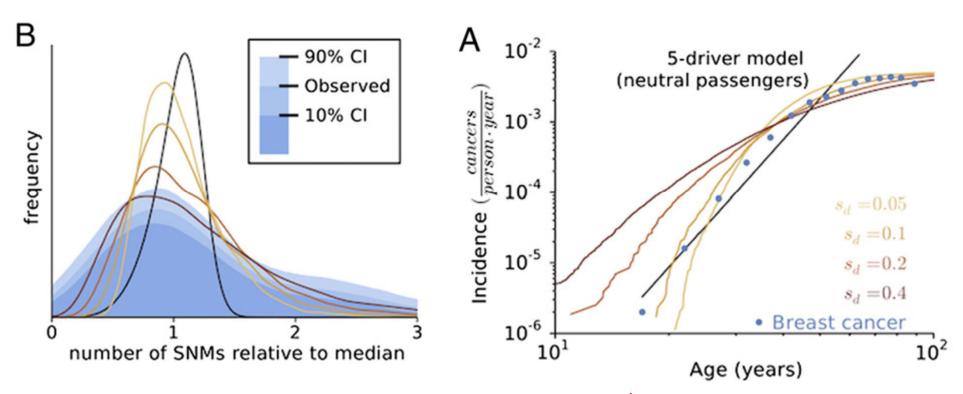
~ (patient age)⁶

It suggests the existence of k=7 driver genes

$$P(T_{cancer} \leq t) \sim (u_1 t)(u_2 t)...(u_k t) \sim u_1 u_2 ... u_k t^k$$

$$P(T_{cancer} = t) \sim \frac{d}{dt} (u_1 t) (u_2 t) ... (u_k t) \sim k u_1 u_2 ... u_k t^{k-1}$$

Can we prove/quantify it using statistics?



Assume: growth rate of cancer= $(1+s_d)^{Nd}/(1+s_p)^{Np}$

 μ =10⁻⁸, Target_d=1,400, Target_p=10⁷, s_d=0.05 to 0.4, s_p=0.001 s_p/s_d for breast: 0.0060±0.0010;

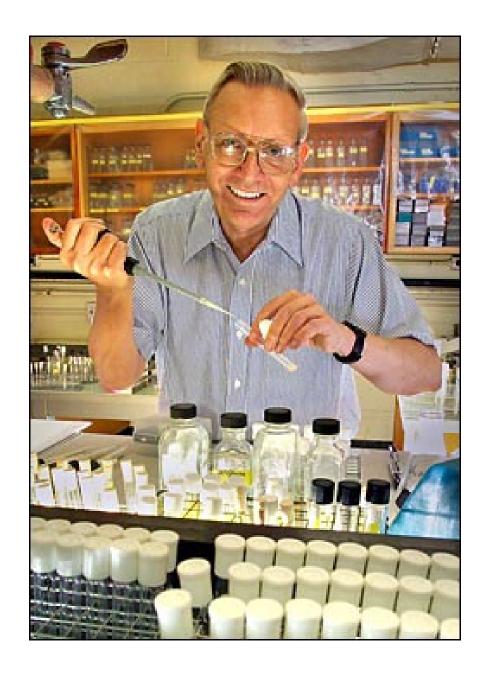
melanoma: 0.016±0.003; lung: 0.0094±0.0093;

Blue - data on breast cancer: incidence; non-synonymous mutations

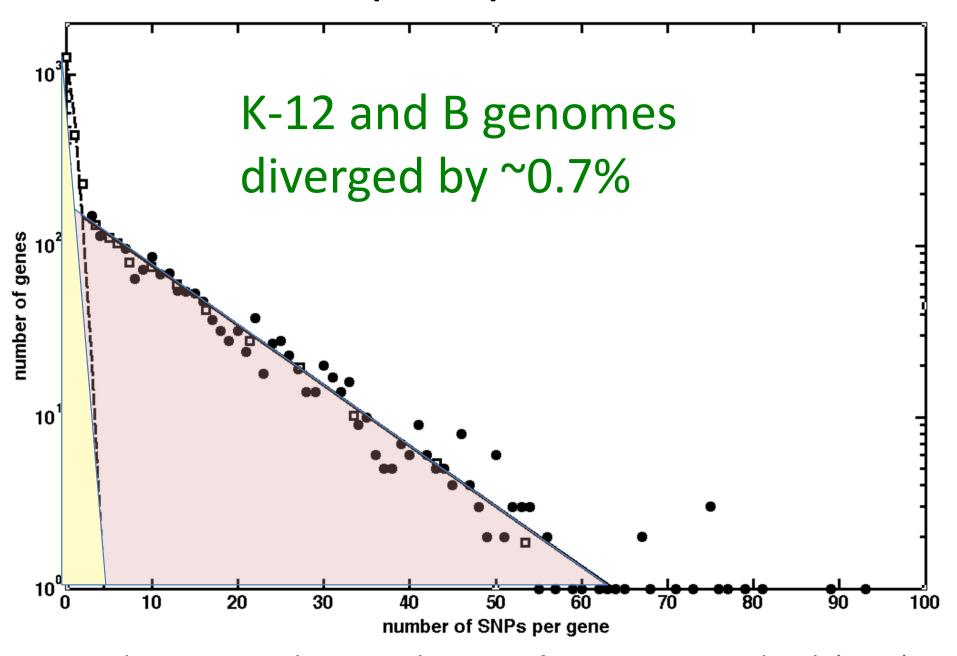
Poisson and Exponential Distributions

F. William Studier

- Worked at Brookhaven National Laboratory, Long Island, NY since 1964
- Inventor of slab gel electrophoresis in 1970 (not patented- back then no incentive to patent work if you are supported by the US givernment)
- Inventor of T7 phage expression system for fast production of proteins.
 Licensed by over 900 companies, generated over \$55 million for the lab https://en.wikipedia.org/wiki/T7 expression system

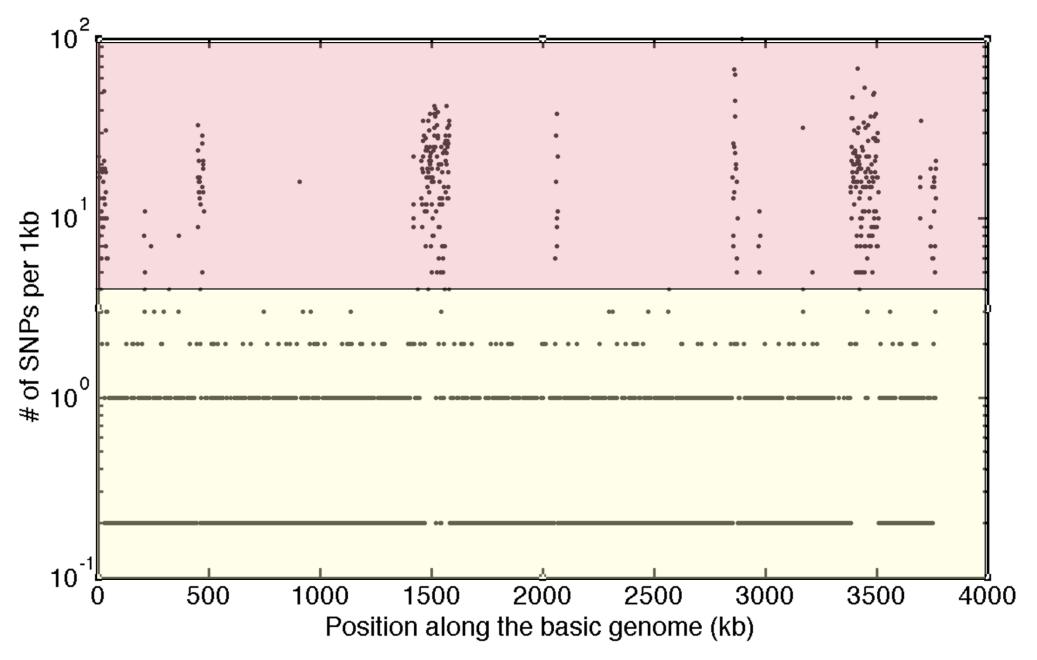


K-12 vs BL21(DE3) strains of E. coli



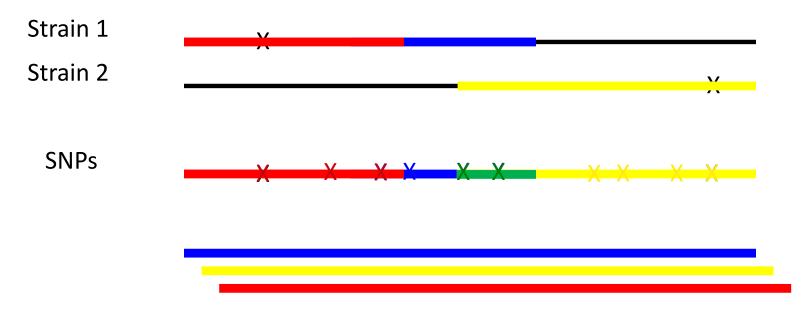
Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF, J. Mol Biol. (2009)

Highly variable segments are clustered



K-12 vs UMNF18 diverged by ~0.18%

Model of bacterial evolution by mutations and homologous recombination



- Mutation rate μ (bp/generation)
- Recombination rate ρ (bp/generation)
- I_R- average length of recombined segments
- $\theta = 2\mu N_e$ depending on N_e (effective) population size
- δ_{TE} transfer efficiency: Prob(successful transfer + recombination): $\sim \exp(-\delta/\delta_{TE})$

Why exponential tail?

- Empirical data for E. coli: Prob(δ)=exp(- δ /0.01) Similar slopes in other species as distant as B. subtilis
- Theory 1: <u>PopGen 101 coalescence time distribution</u>:
 - Prob(T) ~ exp(-T/N_e) → Prob(δ) ~ exp(- δ/ 2μN_e) = $\frac{\exp(-\delta/\theta)}{\theta}$ $\theta = 2\mu N_e \sim 0.01$, $\mu \sim 10^{-10} \rightarrow N_e \sim 10^8$
- Theory 2: <u>biophysics of homologous recombination</u>:
 - − Requires perfect matches of L=30bp on each side → Prob(δ)=(1- δ)^{2L}=exp(-60•δ)=exp(-δ/0.016)=exp(-δ/ δ _{TE})
- Both mechanisms likely to work together:
 <u>biophysics of recombination affects the</u>
 effective population size

Continuous Probability Distributions

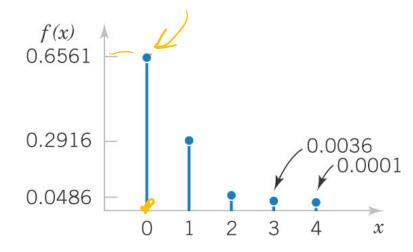
Uniform Distribution

Continuous & Discrete Random Variables

- A discrete random variable is usually integer number
 - N the number of proteins in a cell
 - D- number of nucleotides different between two sequences
- A continuous random variable is a real number
 - C=N/V the concentration of proteins in a cell of volume V
 - Percentage D/L*100% of different nucleotides in protein sequences of different lengths L (depending on set of L's may be discrete but dense)

Probability Mass Function (PMF)

X – discrete random variable



- Probability Mass
 Function: f(x)=P(X=x)
 the probability that
 X is exactly equal to x
- Probability Mass Function for the # of mismatches in 4-mers

P(X=0) =	0.6561
P(X=1) =	0.2916
P(X = 2) =	0.0486
P(X = 3) =	0.0036
P(X = 4) =	0.0001
$\sum_{x} P(X=x)=$	1.0000

Probability Density Function (PDF)

Density functions, in contrast to mass functions, distribute probability continuously along an interval

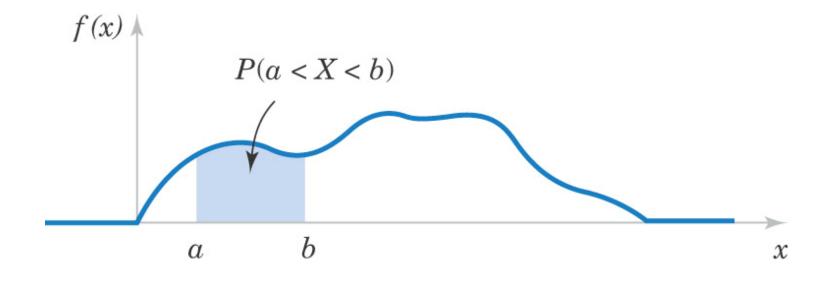


Figure 4-2 Probability is determined from the area under f(x) from a to b.

Probability Density Function

For a continuous random variable *X*,

a probability density function is a function such that

(1) $f(x) \ge 0$ means that the function is always non–negative.

(2)
$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

(3)
$$P(a \le X \le b) = \int_{a}^{b} f(x)dx = \text{area under } f(x)dx \text{ from } a \text{ to } b$$

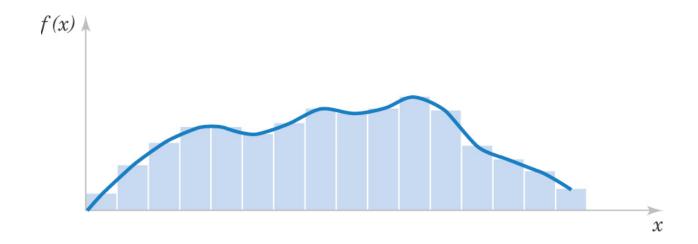
Normalized histogram approximates PDF

A histogram is graphical display of data showing a series of adjacent rectangles. Each rectangle has a base which represents an interval of data values. The height of the rectangle is a number of events in the sample within the base.

When base length is narrow, the histogram could be normalized to approximate PDF (f(x)):

height of each rectangle =

=(# of events within base)/(total # of events)/width of its base.



Normalized histogram approximates a probability density function.

Cumulative Distribution Functions (CDF & CCDF)

The cumulative distribution function (CDF) of a continuous random variable *X* is,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u)du \text{ for } -\infty < x < \infty \quad (4-3)$$

One can also use the inverse cumulative distribution function or complementary cumulative distribution function (CCDF)

$$F_{>}(x) = P(X > x) = \int_{x}^{\infty} f(u)du \text{ for } -\infty < x < \infty$$

Definition of CDF for a continous variable is the same as for a discrete variable

Density vs. Cumulative Functions

 The probability density function (PDF) is the derivative of the cumulative distribution function (CDF).

$$f(x) = \frac{dF(x)}{dx} = -\frac{dF_{>}(x)}{dx}$$
 as long as the derivative exists.

Mean & Variance

Suppose X is a continuous random variable with probability density function f(x). The mean or expected value of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx \tag{4-4}$$

The variance of X, denoted as V(X) or σ^2 , is

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

The standard deviation of *X* is $\sigma = \sqrt{\sigma^2}$.

Gallery of Useful Continuous Probability Distributions

Continuous Uniform Distribution

- This is the simplest continuous distribution and analogous to its discrete counterpart.
- A continuous random variable X with probability density function

$$f(x) = 1 / (b-a) \text{ for } a \le x \le b$$
 (4-6)

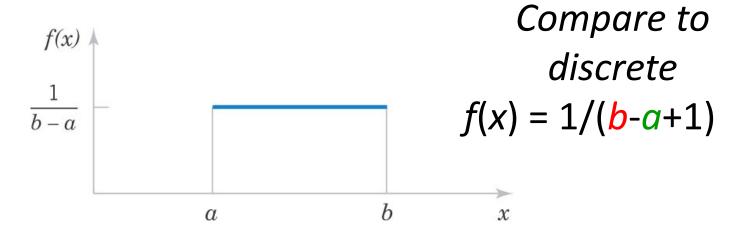


Figure 4-8 Continuous uniform PDF

Comparison between Discrete & Continuous Uniform Distributions

Discrete:

- PMF: f(x) = 1/(b-a+1)
- Mean and Variance:

$$\mu = E(x) = (b+a)/2$$
 $\sigma^2 = V(x) = [(b-a+1)^2-1]/12$

Continuous:

- PMF: f(x) = 1/(b-a)
- Mean and Variance:

$$\mu = E(x) = (b+a)/2$$
 $\sigma^2 = V(x) = (b-a)^2/12$

X is a continuous random variable with a uniform distribution between 0 and 3. What is Probability(X=1)?

- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X=1)?

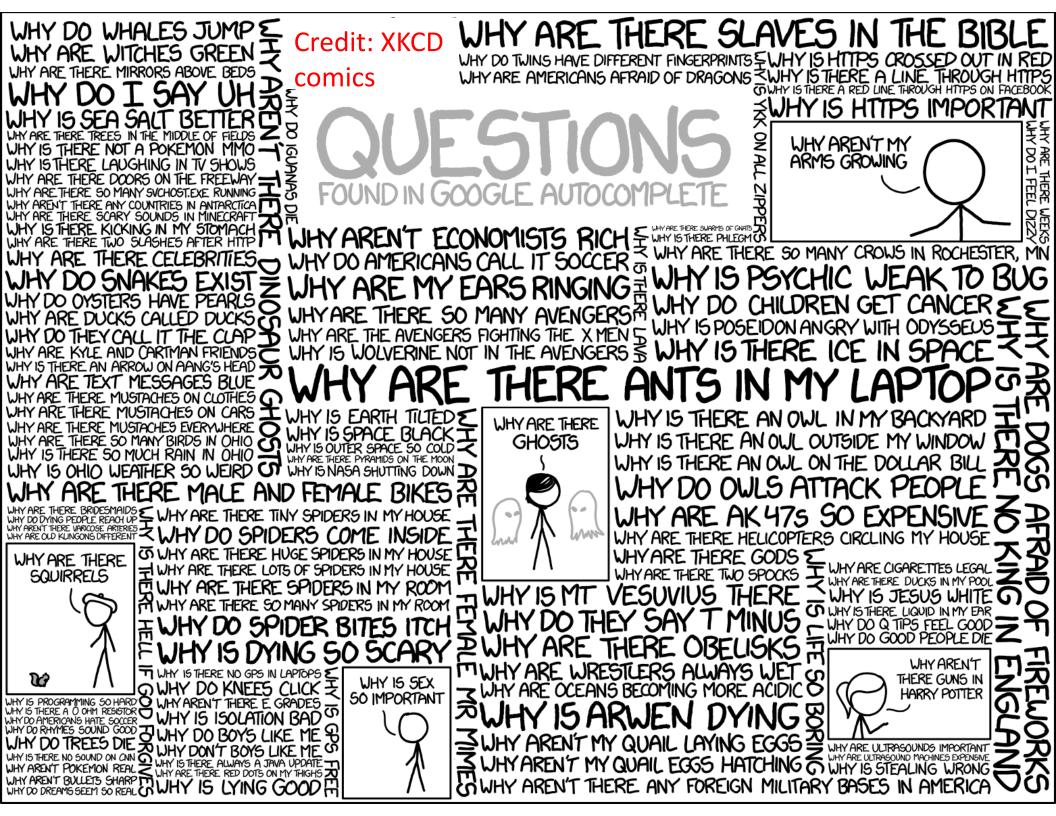
- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X<1)?

- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea

X is a continuous random variable with a uniform distribution between 0 and 3. What is P(X<1)?

- A. 1/4
- B. 1/3
- C. 0
- D. Infinity
- E. I have no idea



Constant rate (Poisson) process

Constant vale (POTSSON) process discrete events happen at rate [Expected number of events in time oc The actual number of events Na 15 a Poisson distributed discrete random variable $P(N=n)=\frac{r_{c}}{h_{1}}e^{-r_{c}}$ Why Poisson? Divide X into many tiny intervals of Length DX Prob(N=n)= (L)pn(1-p)L·n P= Pox L= x/ox $E(N_{E}) = \rho L = \Gamma x$ Poisson

Constant rate (AKA Poisson) processes

- Let's assume that proteins are produced by ribosomes in the cell at a rate r per second.
- The expected number of proteins produced in x seconds is $r \cdot x$.
- The actual number of proteins N_x is a discrete random variable following a Poisson distribution with mean r·x:

$$P_N(N_x=n)=\exp(-r\cdot x)(r\cdot x)^n/n!$$
 $E(N_x)=rx$

- Why Discrete Poisson Distribution?
 - Divide time into many tiny intervals of length $\Delta x << 1/r$
 - The probability of success (protein production)
 per internal is small: p_success=r∆x <<1,
 - The number of intervals is large: $n = x/\Delta x >> 1$
 - Mean is constant: $r=E(N_x)=p_success \cdot n = r\Delta x \cdot x/\Delta x = r \cdot x$
 - In the limit $\Delta x << x$, p_success is small and n is large, thus Binomial distribution \rightarrow Poisson distribution

Exponential Distribution Definition

Exponential random variable X describes interval between two successes of a constant rate (Poisson) random process with success rate r per unit interval.

The probability density function of *X* is:

$$f(x) = re^{-rx}$$
 for $0 \le x < \infty$

Closely related to the discrete geometric distribution

$$f(x) = p(1-p)^{x-1} = p e^{(x-1) \ln(1-p)} \approx pe^{-px}$$
 for small p

o summarite constant rate processes: time I - rate per unit of length N(x) - disrese number of events Toisson: P(N(x)=h)= (r,x)n - r.x

Nine x

(r,x)n - r.x Time interval X between 5400essive events 15

continuously distributed vandom variable

Its PDF if $f(x) = e^{-rx}$

What is the interval X between two successes of a constant rate process?

- X is a continuous random variable
- CCDF: $P_X(X>x) = P_N(N_X=0) = exp(-r \cdot x)$.
 - Remember: $P_N(N_x=n)=exp(-r\cdot x) (r\cdot x)^n/n!$
- PDF: $f_X(x) = -dCCDF_X(x)/dx = r \cdot exp(-r \cdot x)$
- We started with a discrete Poisson distribution where time x was a parameter
- We ended up with a continuous exponential distribution

Exponential Mean & Variance

If the random variable *X* has an exponential distribution with rate r,

$$\mu = E(X) = \frac{1}{r}$$
 and $\sigma^2 = V(X) = \frac{1}{r^2}$ (4-15)

Note that, for the:

- Poisson distribution: mean= variance
- Exponential distribution: mean = standard deviation = variance^{0.5}