## **Instructions for the Group Exercise on Principal Component Analysis**

We will be working with data from Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1994). Cancer Letters, 77(2-3), 163-171. Back in 1994 (sic!) this paper used machine learning to predict whether a breast tissue biopsy was cancerous or benign. Here is an example of the image data they worked with:



Black dots are cell nuclei. Irregular shapes or highly variable cell sizes can mean cancer, but it's tricky.

The sample contains 212 cancer patients and 357 healthy individuals (variable *cancer\_yn*).

Columns 1 through 30 of the table *cancerwdbc* contain 30 other aggregate characteristics of each patient's biopsy:

| 1  | radius             |
|----|--------------------|
| 2  | texture            |
| 3  | perimeter          |
| 4  | area               |
| 5  | smoothness         |
| 6  | compactness        |
| 7  | concavity          |
| 8  | concave points     |
| 9  | symmetry           |
| 10 | fractal dim        |
| 11 | radius std         |
| 12 | texture std        |
| 13 | perimeter std      |
| 14 | area std           |
| 15 | smoothness std     |
| 16 | compactness std    |
| 17 | concavity std      |
| 18 | concave points std |
| 19 | symmetry std       |
| 20 | fractal dim std    |
| 21 | radius extreme     |
| 22 | texture extreme    |

| 23 | perimeter extreme      |
|----|------------------------|
| 24 | area extreme           |
| 25 | smoothness extreme     |
| 26 | compactness extreme    |
| 27 | concavity extreme      |
| 28 | concave points extreme |
| 29 | symmetry extreme       |
| 30 | fractal dim extreme    |

The names of these features are listed in the *feature\_names* variable.

## Assignment 4 (cancer data):

- Download the file cancer\_wdbc.mat and load it into Matlab using > load cancer\_wdbc.mat (be sure to save the file in your current Matlab directory)
- Data in the table *cancerwdbc* (569x30). The first 357 patients are healthy. The remaining 569-357=212 patients have cancer. This information is contained in the variable *cancer\_yn*
- Carry out the PCA of the 30 variables describing biopsies. Matlab also has a dedicated pca commands (read the manual)
- Which variables give the strongest positive or negative contributions to the 1st, 2nd, and 3rd largest eigenvalues?
- Plot the scores (Score=Z\*V) of the 1st vs 2nd eigenvalues for normal and cancer patients separately. Can these PCA scores be used to separate cancer from normal patients? Spoiler alert: they cannot, but you need to plot them separately.