Instructions for the Group Exercise on Covariance and Correlations

We will be working with data from Wolberg, W. H., Street, W. N., \& Mangasarian, O. L. (1994). Cancer Letters, $77(2-3), 163-171$. Back in 1994 (sic!) this paper used machine learning to predict whether a breast tissue biopsy was cancerous or benign. Here is an example of the image data they worked with:

Black dots are cell nuclei. Irregular shapes or highly variable cell sizes can mean cancer, but it's tricky. The sample contains 212 cancer patients and 357 healthy individuals (variable cancer_yn).
Columns 1 through 30 of the table cancerwdbc contain 30 other aggregate characteristics of each patient's biopsy:

1	radius
2	texture
3	perimeter
4	area
5	smoothness
6	compactness
7	concavity
8	concave points
9	symmetry
10	fractal dim
11	radius std
12	texture std
13	perimeter std
14	area std
15	smoothness std
16	compactness std
17	concavity std
18	concave points std
19	symmetry std
20	fractal dim std
21	radius extreme

22	texture extreme
23	perimeter extreme
24	area extreme
25	smoothness extreme
26	compactness extreme
27	concavity extreme
28	concave points extreme
29	symmetry extreme
30	fractal dim extreme

The names of these features are listed in the feature_names variable.

Assignment 3A (synthetic data):

- Generate a sample with Stats $=100,000$ of two Gaussian random variables r1mix and r2 that have a mean of zero and a standard deviation of 2 , and are
- Case 1: Uncorrelated
- Case 1: Correlated with correlation coefficient 0.9
- Case 1: Correlated with correlation coefficient -0.5
- Trick: First create uncorrelated variables r1 and r 2 using the rand command. Then create a new variable: r1mix $=$ mix. ${ }^{*} \mathrm{r} 2+(1-\mathrm{mix} . \wedge 2)^{\wedge} 0.5 .{ }^{*} \mathrm{r} 1$; where $\mathrm{mix}=$ correlation coefficient
- For each value of the mix calculate the covariance and the correlation coefficient between r1mix and r2
- In each case make a scatter plot: plot(r1mix,r2, 'k.'); How do the scatterplots for cases 1,2 , and 3 differ from each other? Illustrate the differences by including screenshots in your report.

Assignment 3B (cancer data):

- Download the file cancer_wdbc.mat and load it into Matlab using > load cancer_wdbc.mat (be sure to save the file in your current Matlab directory)
- Data in the table cancerwdbc (569x30). The first 357 patients are healthy. The remaining 569-357=212 patients have cancer. This information is contained in the variable cancer_yn
- Calculate and report the correlation coefficients between each of the 30 characteristics and the presence/absence of cancer. Use the Matlab command [cancer_corr, p_corr]=corr(cancer_yn, cancerwdbc); the first output variable (cancer_corr) is the Pearson correlation coefficient, and the second variable ($\mathrm{p} _$corr) is the probability of getting this or a stronger correlation by pure chance. One can only report correlations for which this probability is below 0.05 . List all features, correlations, and p_corr probabilities that meet this criterion.
- Generate scatter plots of Mean Area vs. Mean Perimeter and Mean Texture vs. Mean Radius (see above for which columns correspond to these variables).
- Compute and report the Pearson and Spearman correlations of these two pairs of variables.
- Compute the matrix of Pearson correlations between all pairs of variables: there are $30 * 29 / 2=435$ such pairs. Hint: corr_mat=corr(cancerwdbc); does the trick of calculating the matrix of all correlations.
- Plot a histogram of these 435 correlation coefficients. Include the screenshot of this histogram in your report.

