Homework \#1

1. ($\mathbf{1 0}$ points) If A and B are independent, their complements A^{\prime} and B^{\prime} are independent as well.
(a) State the mathematical relationship that you will need to show to prove this. $P\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right)^{*} P\left(B^{\prime}\right)$
(b) Use the following identity for sets $A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$ to prove this relationship.

Also use the rules for complementary probability and addition that follow from the axioms of probability to help you.

$$
\begin{aligned}
P\left(A^{\prime} \cap B^{\prime}\right) & =P\left((A \cup B)^{\prime}\right) \\
& =1-P(A \cup B) \\
& =1-(P(A)+P(B)-P(A \cap B)) \\
& =1-P(A)-P(B)+P(A \cap B) \\
& =1-P(A)-P(B)+P(A) P(B) \\
& =(1-P(A))(1-P(B)) \\
& =P\left(A^{\prime}\right) * P\left(B^{\prime}\right)
\end{aligned}
$$

2. (10 points) Three events are shown on the Venn diagram in the following figure:

Reproduce the figure and shade the region that corresponds to each of the following events.
(a) A^{\prime}
(b) $(A \cap B) \cup\left(A \cap B^{\prime}\right)$
(c) $(A \cup B) \cap C$
(d) $(B \cup A)^{\prime} \quad$ (e) $(B \cap C)^{\prime} \cup A$
(a) Everything but A (b) Just A (c) Intersection of B and C (d) Everything but A and B
(e) Everything but the intersection of B and C
3. (10 points) Consider the hospital emergency department data in the following table. Let A denote the event that a visit is to Hospital 1 and let B denote the event that a visit results in admittance to any hospital. Determine the number of persons in each of the following events.

Hospital	1	2	3	4	total
Total	5292	6991	5640	4329	22,252
LWBS	195	270	246	242	953
Admitted	1277	1558	666	984	4485
Not admitted	3820	5163	4728	3103	16,814

LWBS: People leave without being seen by a physician.
(a) $\mathrm{A}^{\prime} \cap \mathrm{B}$
(b) B^{\prime}
(c) $\mathrm{A} \cup \mathrm{B}$
(d) $\mathrm{A} \cup \mathrm{B}^{\prime}$
(e) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

Answers:

a) $1558+666+984=3208$
b) $22252-4485=17767$
c) $195+1277+3820+1558+666+984=8500$
d) $195+270+246+242+3820+5163+4728+3103+1277=19044$
e) $270+246+242+5163+4728+3103=13752$
4. ($\mathbf{1 0}$ points) There are 4 red balls and 6 white balls in a box. One draws two balls simultaneously. What is the probability that they are the same color?

Answer: 7/15
5. (10 points) You enter a room with three arcade games. One of the games is rigged so that you always lose. The other two games allow you to win with probability 0.2 .
(a) What is the probability that if you play a game at random, you will win?

$$
\begin{aligned}
\mathrm{P}(\mathrm{~W}) & =\mathrm{P}(\mathrm{~W} \mid \mathrm{F}) \mathrm{P}(\mathrm{~F})+\mathrm{P}\left(\mathrm{~W} \mid \mathrm{F}^{\prime}\right) \mathrm{P}\left(\mathrm{~F}^{\prime}\right) \\
& =0.2 *(2 / 3)+0 \\
& =0.1333
\end{aligned}
$$

(b) You play a game at random and lose. What is the probability that it is a fair game?

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~F} \mid \mathrm{W}^{\prime}\right) & =\mathrm{P}\left(\mathrm{~W}^{\prime} \mid \mathrm{F}\right)(\mathrm{F}) / \mathrm{P}\left(\mathrm{~W}^{\prime}\right) \\
& =0.8 *(2 / 3) /(1-0.1333) \\
& =0.6154
\end{aligned}
$$

6. (10 points) Pet rats commonly suffer from chronic upper respiratory infections (URIs). Suppose that the probability that an adult rat has a URI is 0.5 . If at least one parent of a rat has a URI, the baby will also have a URI with probability 0.8 and the probability that a baby rat has a URI given that neither parent has a URI is 0.05 . What is the probability that a baby rat will have a URI? Assume that the probability that the parents have URI are independent of each other.

The probability that neither parent has a URI is $\mathrm{P}\left(\mathrm{P}^{\prime}\right)=0.5 * 0.5=0.25$ and probability that at least one parent has a URI is $\mathrm{P}(\mathrm{P})=1-0.25=0.75$
$\mathrm{P}(\mathrm{B} \mid \mathrm{P})=0.8$
$\mathrm{P}\left(\mathrm{B} \mid \mathrm{P}^{\prime}\right)=0.05$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~B}) \quad & =\mathrm{P}(\mathrm{~B} \mid \mathrm{P}) \mathrm{P}(\mathrm{P})+\mathrm{P}\left(\mathrm{~B} \mid \mathrm{P}^{\prime}\right) \mathrm{P}\left(\mathrm{P}^{\prime}\right) \\
& =0.8^{*} 0.75+0.05^{*} 0.25 \\
& =0.6125
\end{aligned}
$$

7. (10 points) The following circuit operates if and only if there is a path of functional devices from left to right. The probability that each device functions is as shown. Assume that the probability that a device is functional does not depend on whether or not other devices are functional. What is the probability that the circuit operates?

[^0]
[^0]: Answer:
 $P(W)=P\left(W \mid C^{\prime}\right) P\left(C^{\prime}\right)+P(W \mid C) P(C)$
 $=0.28095^{*} 0.8+0.46155^{*} 0.2$ $=0.31707$

