Foundations of Probability

Random experiments

Sample spaces

Venn diagrams of random events

Random Experiments

- An experiment is an operation or procedure, carried out under controlled conditions
 - Example: measure the metabolic flux through a reaction catalyzed by the enzyme A
- An experiment that can result in different outcomes, even if repeated in the same manner every time, is called a random experiment
 - Cell-to-cell variability due to history/genome variants
 - Noise in external parameters such as temperature, nutrients, pH, etc.
- Evolution offers ready-made random experiments
 - Genomes of different species
 - Genomes of different individuals within a species
 - Individual cancer cells

Variability/Noise Produce Output Variation

Internal state of individual cells, Signals from neighbors

Sample Spaces

- Random experiments have unique outcomes.
- The set of all possible outcomes of a random experiment is called the sample space, *S*.
- *S* is discrete if it consists of a finite or countable infinite set of outcomes.
- S is continuous if it contains an interval (either a finite or infinite width) of real numbers.

Examples of a Sample Space

• Experiment measuring the abundance of mRNA expressed from a single gene $S = \{x \mid x > = 0\}$: continuous.

- Bin it into four groups
 S = {below 10, 10-30, 30-100, above 100}:
 discrete.
- Is gene "on" (mRNA above 30)?
 S = {true, false}: logical/Boolean/discrete.

Event

An event (*E*) is a subset of the sample space of a random experiment, i.e., one or more outcomes of the sample space.

- The union of two events is the event that consists of all outcomes that are contained in either of the two events. We denote the union as $E_1 \cup E_2$
- The intersection of two events is the event that consists of all outcomes that are contained in both of the two events. We denote the intersection as $E_1\cap E_2$
- The complement of an event in a sample space is the set of outcomes in the sample space that are not in the event. We denote the complement of the event E as E' (sometimes E^c or \bar{E})

Examples

Discrete

- 1. Assume you toss a coin once. The sample space is $S = \{H, T\}$, where H = head and T = tail and the event of a head is $\{H\}$.
- 2. Assume you toss a coin twice. The sample space is $S = \{(H, H), (H, T), (T, H), (T, T)\}$, and the event of obtaining exactly one head is $\{(H, T), (T, H)\}$.

Continuous

Sample space for the expression level of a gene: $S = \{x \mid x \ge 0\}$ Two events:

- $E1 = \{x \mid 10 < x < 100\}$
- $E2 = \{x \mid 30 < x < 300\}$
- E1 \cap E2 = {x | 30 < x < 100 }
- E1 U E2 = $\{x \mid 10 < x < 300\}$
- $E1' = \{x \mid x \le 10 \text{ or } x \ge 100\}$

Find
5 differences
in beard and
hairstyle

John Venn (1843-1923) British logician

John Venn (1990-) Brooklyn hipster

Which formula describes the blue region?

- A. AUB
- B. $A \cap B$
- C. A'
- D. B'

Get your i-clickers

Which formula describes the blue region?

- A. AUB
- B. $A \cap B$
- C. A'
- D. B'

Which formula describes the blue region?

- A. $(A \cup B) \cap C$
- B. $(A \cap B) \cap C$
- C. (A U B) U C
- D. $(A \cap B) \cup C$

Get your i-clickers

Which formula describes the blue region?

- A. $(A \cup B) \cap C$
- B. $(A \cap B) \cap C$
- C. (AUB)UC
- D. $(A \cap B) \cup C$

Which formula describes the blue region?

- A. $A \cap C$
- B. A' U C'
- C. $(A \cap B \cap C)'$
- D. $(A \cap B) \cap C$

Get your i-clickers

Which formula describes the blue region?

- A. $A \cap C$
- B. A'UC'
- C. $(A \cap B \cap C)'$
- D. $(A \cap B) \cap C$

Definitions of Probability

Two definitions of probability

 (1) STATISTICAL PROBABILITY: the relative frequency with which an event occurs in the long run

• (2) INDUCTIVE PROBABILITY: the degree of belief which it is reasonable to place in a proposition on given evidence

Statistical Probability

A statistical probability of an event is the limiting value of the relative frequency with it occurs in a very large number of independent trials

Empirical

Statistical Probability of a Coin Toss

John Edmund Kerrich (1903–1985) British/South African mathematician

Excess of heads among 2,000 coin tosses (Kerrich 1946)

Statistical Probability of a Coin Toss

John Edmund Kerrich (1903–1985) British/South African mathematician

Proportion of heads among 10,000 coin tosses (Kerrich 1946)

Who is ready to use Matlab?

- A. I have Matlab installed on my laptop
- B. I am ready to use Matlab on EWS
- C. I don't have it ready but plan to install it
- D. I am not ready but plan to use EWS
- E. I plan to use other software (Python, R, etc.)

Matlab is easy to learn

- Matlab is the lingua franca of all of engineering
- Use online tutorials e.g.: https://www.youtube.com/watch?v=82TGgQApFIQ
- Matlab is designed to work with Matrices → symbols * and / are understood as matrix multiplication and division
- Use .* and ./ for regular (non-matrix) multiplication
- Add; in the end of the line to avoid displaying the output on the screen
- Loops: for i=1:100; f(i)=floor(2.*rand); end;
- Conditional statements: if rand>0.5; count=count+1; end;
- Plotting: plot(x,y,'ko-'); or semilogx(x,y,'ko-'); or loglog(x,y,'ko-'); .
 To keep adding plots onto the same axes use: hold on;
 To create a new axes use figure;
- Generating matrices: rand(100) generates square matrix 100x100.
 Confusing! Use rand(100,1) or zeros(30,20), or randn(1,40) (Gaussian);
- If Matlab complains multiplying matrices check sizes using whos and if needed use transpose operation: x=x';

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

Basics:

```
save variables to file.mat
save 'file.mat'
                         load variables from file.mat
load 'file.mat'
                 record input/output to file diary
diary on
diary off
                 stop recording
whos
                list all variables currenly defined
                 delete/undefine all variables
clear
                         quick help on a given command
help command
doc command
                         extensive help on a given command
```

Defining/changing variables:

```
x = 3 define variable x to be 3

x = [1 \ 2 \ 3] set x to the 1×3 row-vector (1,2,3)

x = [1 \ 2 \ 3]; same, but don't echo x to output

x = [1;2;3] set x to the 3×1 column-vector (1,2,3)

A = [1 \ 2 \ 3 \ 4;5 \ 6 \ 7 \ 8;9 \ 10 \ 11 \ 12]; set x to the 3×4 matrix with rows 1,2,3,4 etc.

x = [1,2,3] change x = [1,2,3] to (1,7,3)

x = [1,2,3] change x = [1,2,3] to (1,7,3)
```

Arithmetic and functions of numbers:

```
3*4, 7+4, 2-6 8/3 multiply, add, subtract, and divide numbers 3^7, 3^6(8+2i) compute 3 to the 7th power, or 3 to the 8+2i power sqrt (-5) compute the square root of -5 exp(12) compute e^{12} compute the natural log (ln) and base-10 log (log<sub>10</sub>) abs (-5) compute the absolute value |-5| sin(5*pi/3) compute the sine of 5\pi/3 besselj(2,6) compute the Bessel function J (6)
```

Arithmetic and functions of vectors and matrices:

```
\times * 3 multiply every element of x by 3
     2 add 2 to every element of x
x + y element-wise addition of two vectors x and y
     y product of a matrix A and a vector y
A * B product of two matrices A and B
x * y not allowed if x and y are two column vectors!
x . * y element-wise product of vectors x and y
A^3
         the square matrix A to the 3rd power
         not allowed if x is not a square matrix!
x^3
         every element of x is taken to the 3rd power
cos(x) the cosine of every element of x
         the absolute value of every element of A
\exp(A) e to the power of every element of A
sgrt(A)
                 the square root of every element of A
                 the matrix exponential e^A
expm(A)
                 the matrix whose square is A
sqrtm(A)
```

Constructing a few simple matrices:

```
rand(12,4)
                 a 12×4 matrix with uniform random numbers in [0,1)
                 a 12×4 matrix with Gaussian random (center 0, variance 1)
randn(12,4)
                 a 12×4 matrix of zeros
zeros(12,4)
ones (12,4)
                 a 12×4 matrix of ones
eve(5)
                 a 5\times5 identity matrix I(\text{"eye"})
                 a 12×4 matrix whose first 4 rows are the 4×4 identity
eye(12,4)
linspace (1.2, 4.7, 100)
                 row vector of 100 equally-spaced numbers from 1.2 to 4.7
7:15 row vector of 7,8,9,...,14,15
                 matrix whose diagonal is the entries of x (and other elements = 0)
diag(x)
```

Portions of matrices and vectors:

```
the 2nd to the 12th elements of x
x(2:12)
                 the 2nd to the last elements of x
x(2:end)
x(1:3:end)
                 every third element of x, from 1st to the last
x(:)
                 all the elements of x
                 the row vector of every element in the 5th row of A
A(5,:)
A(5,1:3)
                 the row vector of the first 3 elements in the 5th row of A
A(:,2)
                 the column vector of every element in the 2nd column of A
diag(A)
                 column vector of the diagonal elements of A
```

Solving linear equations:

```
A \ b for A a matrix and b a column vector, the solution x to Ax=b inv (A) the inverse matrix A^{-1} [L, U, P] = lu (A) the LU factorization PA=LU eig (A) the eigenvalues of A [V, D] = eig (A) the columns of V are the eigenvectors of A, and the diagonals diag (D) are the eigenvalues of A
```

Plotting:

```
plot(y)
                 plot y as the y axis, with 1,2,3,... as the x axis
                 plot y versus x (must have same length)
plot(x, y)
                 plot columns of A versus x (must have same # rows)
plot(x, A)
                 plot y versus x on a log-log scale
loglog(x, y)
                         plot y versus x with x on a log scale
semilogx(x, y)
semilogy(x,y)
                          plot y versus x with y on a log scale
fplot(@(x) ...expression...,[a,b])
                          plot some expression in x from x=a to x=b
                 force the x and y axes of the current plot to be scaled equally
axis equal
title('A Title')
                         add a title A Title at the top of the plot
                         label the x axis as blah
xlabel('blah')
                         label the v axis as blah
ylabel('blah')
legend('foo','bar')
                                  label 2 curves in the plot foo and bar
grid include a grid in the plot
                 open up a new figure window
figure
```

Transposes and dot products:

```
the transposes of x and A

x', A' the complex-conjugate of the transposes of x and A dot (x, y), sum(x.*y) ...two other ways to write the dot product x' * y' the outer product of two column vectors x and y
```

VIA app by Kramer needs to be updated

 Get the latest version app from <u>https://k.kramerav.com/support/download.as</u> <u>p?f=61213</u>

 On 8/24/2023 the version that worked was 4.0.3.1344

Matlab group exercise

Each table to edit the file coin_toss_template.m (replace all ?? with commands/variables/operations) or writes a new Matlab (Python, R, or anything else) script to:

- Simulate a fair coin toss experiment
- Generate multiple tosses of a fair coin:
 1 heads, 0 tails
- Calculate the fraction of heads (f_heads(t)) at timepoints:
 t=10; 100; 1000; 10,000; 100,000; 1,000,000; 10,000,000 coin tosses
- Plot fraction of heads f_heads(t) vs t with a logarithmic t-axis
- Plot abs(f_heads(t)-0.5) vs t on a log-log plot (both axes are logarithmic)

How I did it

- Stats=1e7;
 r0=rand(Stats,1); r1=floor(2.*r0);
 n_heads(1)=r1(1);
 for t=2:Stats; n_heads(t)=n_heads(t-1)+r1(t); end;
 tp=[1, 10,100,1000, 10000, 100000, 10000000, 10000000]
- np=n heads(tp); fp=np./tp
- figure; semilogx(tp,fp,'ko-');
- hold on; semilogx([1,10000000],[0.5,0.5],'r--');
- figure; loglog(tp,abs(fp-0.5),'ko-');
- hold on; loglog(tp,0.5./sqrt(tp),'r--');

Proportion of heads among 1,000,000,000 coin tosses (10⁵ more than Kerrich) took me 33 seconds on my Surface Book

ABS(Proportion of heads-0.5) among 100,000,000 coin tosses