Reminder
\[Y = \beta_0 + \beta_1 X + \epsilon \]

Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon level from Table 11-1.

\[Y = 75 + 15 \cdot X + \epsilon \]
\[Y = \beta_0 + \beta_1 X + \epsilon \quad ; \quad E(\epsilon | x) = 0 \quad \forall x \]

How does one find \(\beta_0 \) and \(\beta_1 \)?

\[
\text{Cov}(Y, X) = \text{Cov}((\beta_0 + \beta_1 X + \epsilon) , X) = \]

\[
= \text{Cov}(\beta_0 , X) + \beta_1 \text{Cov}(X, X) + \text{Cov}(\epsilon, X)
\]

\[
\text{Cov}(\beta_0 , X) = 0 \quad \text{since} \quad \beta_0 \text{ is constant}
\]

\[
\text{Cov}(X, X) = E(X^2) - E(X)^2 = \text{Var}(X)
\]

\[
\text{Cov}(\epsilon, X) = E(\epsilon \times X) - E(\epsilon) \cdot E(X) = \]

\[
E(\epsilon \times X) = \sum_{\text{all } x} x \cdot E(\epsilon | x) = 0
\]

Thus

\[
\beta_1 = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}
\]

\[
\beta_0 = E(Y) - \beta_1 E(X)
\]
Method of least squares

- The **method of least squares** is used to estimate the parameters, β_0 and β_1 by minimizing the sum of the squares of the vertical deviations in Figure 11-3.

Figure 11-3 Deviations of the data from the estimated regression model.
Multiple Linear Regression
(Chapters 12-13 in Montgomery, Runger)
12-1: Multiple Linear Regression Model

12-1.1 Introduction

• Many applications of regression analysis involve situations in which there are more than one regressor variable X_k used to predict Y.

• A regression model then is called a multiple regression model.
Multiple Linear Regression Model

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \ldots \beta_k x_k + \varepsilon \]

One can also use powers and products of other variables or even non-linear functions like \(\exp(x_i) \) or \(\log(x_i) \) instead of \(x_3, \ldots, x_k \).

Example: the general two-variable quadratic regression has 6 constants:

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1)^2 + \beta_4 (x_2)^2 + \beta_5 (x_1 x_2) + \varepsilon \]
Logistic Regression

\[\hat{y} = \sigma(\beta_0 + \beta_1 x_1 + \beta_2 x_2) \]

\[\sigma(t) = \frac{1}{1 + e^{-t}} \]
12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

Suppose the model relating the regressors to the response is

\[y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_k x_{ik} + \epsilon_i \quad i = 1, 2, \ldots, n \]

In matrix notation this model can be written as

\[y = X\beta + \epsilon \quad (12-6) \]
12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

where

\[
y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{and} \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}
\]
12-1.3 Matrix Approach to Multiple Linear Regression

We wish to find the vector $\hat{\beta}$ that minimizes the sum of squares of error terms:

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \varepsilon' \varepsilon = (y - X\beta)' (y - X\beta)$$

$$0 = \frac{\partial L}{\partial \beta} = -X' (y - X\beta) = -X' y + (X'X)\beta$$

The resulting least squares estimate is

$$\hat{\beta} = (X'X)^{-1} X'y$$

(12-7)
Multiple Linear Regression Model

\[\hat{\beta} = (X'X)^{-1} X'y \]

\[\hat{y} = X\hat{\beta} = X(X'X)^{-1}X'y, \]

\[\hat{y} = Hy, \quad \text{and} \quad e = (I - H)y. \]

\[H = H' = H^2 = X(X'X)^{-1}X'(X'X)^{-1}X = X(X'X)^{-1}X' \]

Vectors \(\hat{y} \) and \(e \) are orthogonal since

\[\hat{y}'e = y'H'(I - H)y = 0 \quad \text{since} \]

\[H(I - H) = H - H^2 = H - H = 0. \]
12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Unbiased estimators:

\[
E(\hat{\beta}) = E[(X'X)^{-1}X'Y] \\
= E[(X'X)^{-1}X'(X\beta + \epsilon)] \\
= E[(X'X)^{-1}X'X\beta + (X'X)^{-1}X'\epsilon] \\
= \beta
\]

Covariance Matrix of Estimators:

\[
C = (X'X)^{-1} = \begin{bmatrix}
C_{00} & C_{01} & C_{02} \\
C_{10} & C_{11} & C_{12} \\
C_{20} & C_{21} & C_{22}
\end{bmatrix}
\]
12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Individual variances and covariances:

\[V(\hat{\beta}_j) = \sigma^2 C_{jj}, \quad j = 0, 1, 2 \]

\[\text{cov}(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 C_{ij}, \quad i \neq j \]

In general,

\[\text{cov}(\hat{\beta}) = \sigma^2 (X'X)^{-1} = \sigma^2 C \]
12-1: Multiple Linear Regression Models

Estimating error variance σ_{ε}^2

An unbiased estimator of error variance σ_{ε}^2 is

$$\hat{\sigma}_{\varepsilon}^2 = \frac{\sum_{i=1}^{n} e_i^2}{n - p} = \frac{SS_E}{n - p}$$ (12-16)

Here $p = k + 1$ for k-variable multiple linear regression
R² and Adjusted R²

The coefficient of multiple determination \(R^2 \)

\[
R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}
\]

The adjusted \(R^2 \) is

\[
R_{adj}^2 = 1 - \frac{SS_E/(n - p)}{SS_T/(n - 1)}
\] (12-23)

- The adjusted \(R^2 \) statistic penalizes adding terms to the MLR model.
- It can help guard against overfitting (including regressors that are not really useful)
How to know where to stop?

• Adding new variables x_i to MLR watch the adjusted R^2

• Once the adjusted R^2 no longer increases = stop.

Now you did the best you can.
Matlab exercise

• Every group works with
g0=2907; g1=1527; g2=2629; g3=2881;
g4=1144; g5=1066;

• Compute **Multiple Linear Regression (MLR):**
where
\[y = \exp_t(g0); \quad x1 = \exp_t(g1); \quad x2 = \exp_t(g2); \]

• **How much better** the MLR did compared to the
Single Linear Regression (SLR)?

• **Continue increasing** the number of genes in \(x \)
until \(R_{adj} \) starts to decrease
How I did it

- $g_0=2907; g_1=1527; g_2=2629; g_3=2881; g_4=1144; g_5=1066$;
- $y=\text{exp}_t(g_0,:)'$;
- \% first use one x to predict y
- $x=\text{exp}_t(g_1,:)'$;
- figure; plot($x,y,'ko'$)
- $lm=\text{fitlm}(x,y)$
- $y_{\text{fit}}=lm.$Fitted;
- hold on;
- plot($x,lm.$Fitted,'r-');
- \% now use 2 x's to predict y
- $x=[\text{exp}_t(g_1,:)', \text{exp}_t(g_2,:)]'$;
- $lm2=\text{fitlm}(x,y)$
- $y_{\text{fit}}=lm2.$Fitted;
- hold on; plot($x(:,1),y_{\text{fit}},'gd'$);
- \% now use m x's to predict y
- corr_matrix=corr(\text{exp}_t');
- $g_0=2907$;
- $[u v]=\text{sort}(\text{corr}_\text{matrix}(g_0,:),'descend')$;
- $x=[\text{exp}_t(v(2:m+1,:)]'$;
- $lm3=\text{fitlm}(x,y)$
- $y_{\text{fit}}=lm3.$Fitted;
- plot($x(:,1),y_{\text{fit}},'s'$);