Constant rate (Poisson) process

Discrete events happen at rate Γ.
Expected number of events in time x is Γx.

The actual number of events N_x is a Poisson distributed discrete random variable.

$$P(N = n) = \frac{(\Gamma x)^n}{n!} e^{-\Gamma x}$$

Why Poisson? Divide x into many tiny intervals of length Δx.

$$p = \frac{\Gamma x}{\Delta x}$$
$$l = \frac{x}{\Delta x}$$

$$E(N_x) = pL = \Gamma x$$

$$\text{Prob}(N = n) = \binom{l}{n} p^n (1-p)^{l-n}$$

As $p \sim \Delta x \to 0$, $L \sim \frac{l}{\Delta x} \to \infty$.
Constant rate (AKA Poisson) processes

- Let’s assume that proteins are produced by ribosomes in the cell at a rate \(r \) per second.
- The expected number of proteins produced in \(x \) seconds is \(r \cdot x \).
- The actual number of proteins \(N_x \) is a discrete random variable following a Poisson distribution with mean \(r \cdot x \):
 \[
P_N(N_x=n)=\exp(-r \cdot x)(r \cdot x)^n/n! \quad \text{E}(N_x)= r x
 \]
- Why Discrete Poisson Distribution?
 - Divide time into many tiny intervals of length \(\Delta x << 1/r \)
 - The probability of success (protein production) per internal is small: \(p_{\text{success}}=r\Delta x << 1 \),
 - The number of intervals is large: \(n= x/\Delta x >> 1 \)
 - Mean is constant: \(r=E(N_x)=p_{\text{success}} \cdot n= r\Delta x \cdot x/\Delta x = r \cdot x \)
 - In the limit \(\Delta x << x \), \(p_{\text{success}} \) is small and \(n \) is large, thus Binomial distribution \(\rightarrow \) Poisson distribution
Exponential Distribution Definition

Exponential random variable X describes interval between two successes of a constant rate (Poisson) random process with success rate r per unit interval.

The probability density function of X is:

$$f(x) = re^{-rx} \text{ for } 0 \leq x < \infty$$

Closely related to the discrete geometric distribution

$$f(x) = p(1-p)^{x-1} = p e^{(x-1) \ln(1-p)} \approx pe^{-px} \text{ for small } p$$
What is the interval X between two successes of a constant rate process?

- X is a continuous random variable
- CCDF: $P_X(X>x) = P_{\mathcal{N}}(N_X=0) = \exp(-r \cdot x)$.
 - Remember: $P_{\mathcal{N}}(N_X=n) = \exp(-r \cdot x) \frac{(r \cdot x)^n}{n!}$
- PDF: $f_X(x) = -dCCDF_X(x)/dx = r \cdot \exp(-r \cdot x)$
- We started with a discrete Poisson distribution where time x was a parameter
- We ended up with a continuous exponential distribution
Exponential Mean & Variance

If the random variable X has an exponential distribution with rate r,

$$\mu = E(X) = \frac{1}{r} \quad \text{and} \quad \sigma^2 = V(X) = \frac{1}{r^2}$$ \hspace{1cm} (4–15)

Note that, for the:

• Poisson distribution: \text{mean}= \text{variance}
• Exponential distribution: \text{mean} = \text{standard deviation} = \text{variance}^{0.5}
Biochemical Reaction Time

- The time x (in minutes) until an enzyme catalyzes a biochemical reaction and generates a product is approximated by this CCDF:

 $$F_>(x) = e^{-2x} \text{ for } 0 \leq x$$

 Here the rate of this process is $r=2 \text{ min}^{-1}$ and $1/r=0.5 \text{ min}$ is the average time between successive products of this enzyme.

- What is the PDF?

 $$f(x) = -\frac{dF_>(x)}{dx} = -\frac{d}{dx} e^{-2x} = 2e^{-2x} \text{ for } 0 \leq x$$

- What proportion of reactions will not generate another product within 0.5 minutes of the previous product?

 $$P(X > 0.5) = F_>(0.5) = e^{-2 \times 0.5} = 0.37$$
We observed our enzyme for 1 minute and no product has been generated: The product is “overdue”

What is the probability that a product will not appear during the next 0.5 minutes?

\[F_X(x) = e^{-2x} \]
\[F_X(0.5) \approx 0.37 \]
\[F_X(1.5) \approx 0.05 \]
\[F_X(1.0) \approx 0.13 \]

A. 0.32
B. 0.37
C. 0.08
D. 0.24
E. I have no idea

Get your i-clickers
Memoryless property of the exponential distribution

\[P(X > t+s \mid X > s) = P(X > t) \]

\[P(X > t+s \mid X > s) = \frac{P(X > t+s, X > s)}{P(X > s)} = \frac{\exp(-\lambda(t+s))}{\exp(-\lambda s)} = \exp(-\lambda t) = \]

\[= P(X > t) \]

Exponential is the only memoryless distribution
Erlang Distribution

• The Erlang distribution is a generalization of the exponential distribution.

• The exponential distribution models the time interval to the 1st event, while the

• Erlang distribution models the time interval to the k^{th} event, i.e., a sum of k exponentially distributed variables.

• The exponential, as well as Erlang distributions, is based on the constant rate (or Poisson) process.
Constant rate (Poisson) process

Events happen independently from each other at constant rate λ. \(E[N_x] = \lambda x \)

\(X \) follows Erlang distribution

\[f(X > x) = \sum_{n=1}^{r-1} P(N_x = n) = \sum \frac{(rx)^n}{n!} e^{-rx} \]
Erlang Distribution

Generalizes the Exponential Distribution: waiting time until k’s events
(constant rate process with rate=r)

\[P(X > x) = \sum_{m=0}^{k-1} \frac{e^{-rx} (rx)^m}{m!} = 1 - F(x) \]

Differentiating \(F(x) \) we find that all terms in the sum except the last one cancel each other:

\[f(x) = \frac{r^k x^{k-1} e^{-rx}}{(k-1)!} \quad \text{for } x > 0 \quad \text{and } k = 1, 2, 3, ... \]
Gamma Distribution

The random variable X with a probability density function:

$$f(x) = \frac{r^k x^{k-1} e^{-rx}}{\Gamma(k)}, \text{ for } x > 0$$ \hspace{1cm} (4-18)

has a gamma random distribution with parameters $r > 0$ and $k > 0$. If k is a positive integer, then X has an Erlang distribution.
$f(x) = \frac{r^k x^{k-1} e^{-rx}}{\Gamma(k)}$, for $x > 0$

$$\int_{0}^{+\infty} f(x) \, dx = 1$$

Hence

$$\Gamma(k) = \int_{0}^{+\infty} r^k x^{k-1} e^{-rx} \, dx = \int_{0}^{+\infty} y^{k-1} e^{-y} \, dy$$

Comparing with Erlang distribution for integer k one gets

$$\Gamma(k) = (k - 1)!$$
Gamma Function

The gamma function is the generalization of the factorial function for $r > 0$, not just non-negative integers.

$$\Gamma(k) = \int_0^\infty y^{k-1} e^{-y} \, dy, \quad \text{for } r > 0$$

(4-17)

Properties of the gamma function

$$\Gamma(1) = 1$$

$$\Gamma(k) = (k - 1)\Gamma(k - 1) \quad \text{recursive property}$$

$$\Gamma(k) = (k - 1)! \quad \text{factorial function}$$

$$\Gamma(1/2) = \pi^{1/2} = 1.77 \quad \text{interesting fact}$$
$\Gamma(x)$

Daniel Bernoulli's Gamma
Mean & Variance of the Erlang and Gamma

• If X is an Erlang (or more generally Gamma) random variable with parameters r and k,
 $\mu = E(X) = k/r$ and $\sigma^2 = V(X) = k/r^2$ \hspace{1cm} (4-19)

• Generalization of exponential results:
 $\mu = E(X) = 1/r$ and $\sigma^2 = V(X) = 1/r^2$ \hspace{1cm} or
 Negative binomial results:
 $\mu = E(X) = k/p$ and $\sigma^2 = V(X) = k(1-p) / p^2$
Matlab exercise:

• Generate a sample of 100,000 variables with \textbf{Exponential distribution} with \(r = 0.1 \)
• Generate a sample of 100,000 variables with \textit{“Harry Potter” Gamma distribution} with \(r = 0.1 \) and \(k = 9 \frac{3}{4} (9.75) \)
• Calculate mean and compare it to \(\frac{1}{r} \) (Exp) and \(\frac{k}{r} \) (Gamma)
• Calculate standard deviation and compare it to \(\frac{1}{r} \) (Exp) and \(\frac{\sqrt{k}}{r} \) (Gamma)
• Plot semilog-y plots of PDFs \textbf{and CCDFs}.
• \textbf{Hint:} read the help page (better yet documentation webpage) for \texttt{random(‘Exponential’...)} and \texttt{random(‘Gamma’...)}: one of their parameters is different than \(r \)
Matlab exercise: Exponential

- Stats=100000; r=0.1;
- r2=random('Exponential', 1./r, Stats,1);
- disp([mean(r2),1./r]); disp([std(r2),1./r]);
- step=1; [a,b]=hist(r2,0:step:max(r2));
- pdf_e=a./sum(a)./step;
- subplot(1,2,1); semilogy(b,pdf_e,'rd-');
- x=0:0.01:max(r2);
 - for m=1:length(x);
 - ccdf_e(m)=sum(r2>x(m))./Stats;
 - end;
- subplot(1,2,2); semilogy(x,ccdf_e,'ko-');
Matlab exercise: Gamma

- Stats=100000; r=0.1; k=9.75;
- r2=random('Gamma', k,1./r, Stats,1);
- disp([mean(r2),k./r]);
- disp([std(r2),sqrt(k)./r]);
- step=0.1; [a,b]=hist(r2,0:step:max(r2));
- pdf_g=a./sum(a)./step;
- figure;
- subplot(1,2,1); semilogy(b,pdf_g,'ko-'); hold on;
- x=0:0.01:max(r2); clear cdf_g;
- for m=1:length(x);
 - cdf_g(m)=sum(r2>x(m))./Stats;
- end;
- subplot(1,2,2); semilogy(x,cdf_g,'rd-');