Binomial Distribution

- Binomially-distributed random variable X equals sum (number of successes) of n independent Bernoulli trials
- The probability mass function is:

$$f(x) = C_x^n p^x (1-p)^{n-x} \text{ for } x = 0,1,...n$$
 (3-7)

Based on the binomial expansion:

$$\int = \left(p + q \right)^{N} = \sum_{\chi = 0}^{N} \left(\frac{h}{\chi} p^{\chi} q^{N-\chi} \right)^{N-\chi}$$

Binomial Mean

X is a binomial random variable with parameters p and n

Mean:

$$\mu = E(X) = np$$

$$\mu = \sum x C_x^n p^x q^{n-x} = p \frac{\partial}{\partial p} \sum C_x^n p^x q^{n-x} =$$

$$=p\frac{\partial}{\partial p}(p+q)^n=np$$

Binomial mean, variance and standard deviation

Let X be a binomial random variable with parameters p and n

- Mean:

$$\mu = np$$

- Variance:

$$\sigma^2 = V(X) = np(1-p)$$

- Standard deviation:

$$\sigma = \sqrt{np(1-p)}$$

- Standard deviation to mean ratio

$$\sigma/\mu = \sqrt{np(1-p)}/np = \frac{\sqrt{(1-p)/p}}{\sqrt{n}}$$

Poisson Distribution

- Limit of the binomial distribution when
 - -n, the number of attempts, is very large
 - p, the probability of success is very small
 - $-E(X)=np=\lambda$ is O(1)

The annual numbers of deaths from horse kicks in 14 Prussian army corps between 1875 and 1894

Number deaths	of Observed frequency	Expected frequency
O	144	139
1	91	97
2	32	34
3	11	8
4	2	1
5 and over	0	O
Total	280	280

From von Bortkiewicz 1898

Siméon Denis Poisson (1781–1840) French mathematician and physicist

Let
$$\lambda = np = E(x)$$
, so $p = \frac{\lambda}{n}$

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

$$= \frac{n(n - 1) \dots (n - x + 1)}{x!} \left(\frac{\lambda}{n}\right)^{x} \left(1 - \frac{\lambda}{n}\right)^{n - x} \sim \frac{n^{x}}{x!} \left(\frac{\lambda}{n}\right)^{x} = \frac{\lambda^{x}}{x!};$$

$$\sum_{x} \frac{\lambda^{x}}{x!} = e^{\lambda}.$$

Normalization requires $\sum_{x} P(X = x) = 1$.

Thus
$$P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$$

Poisson Mean & Variance

If X is a Poisson random variable, then:

- Mean: $\mu = E(X) = \lambda = h \cdot p$ Variance: $\sigma^2 = V(X) = \lambda = h \cdot p \cdot (1 p) \approx M \cdot p$
- Standard deviation: $\sigma = \lambda^{1/2}$

Note: Variance = Mean

Note: Standard deviation/Mean = $\lambda^{-1/2}$ decreases with λ

Sec 2-

Matlab exercise: Poisson distribution

- Generate a sample of size 100,000 for Poissondistributed random variable X with $\lambda = 2$
- Plot the <u>approximation</u> to the Probability Mass Function based on <u>this sample</u>
- Calculate the mean and variance of <u>this</u> <u>sample</u> and compare it to theoretical calculations:

$$E[X] = \lambda$$
 and $V[X] = \lambda$

Matlab exercise: Poisson distribution

- Stats=100000; lambda=2;
- r2=random('Poisson',lambda,Stats,1);
- mean(r2)
- var(r2)
- [a,b]=hist(r2, 0:max(r2));
- p_p=a./sum(a);
- figure; stem(b,p_p);
- figure; semilogy(b,p_p,'ko-')

Poisson Distribution in Genome Assembly

Cost per Genome

Poisson Example: Genome Assembly

- Goal: DNA sequence (ACTG) of the entire genome
- Problem: Sequencers generate random short reads

Sequencer	Sanger 3730xl	454 GS	Ion Torrent	SOLiDv4	Illumina HiSeq 2000	Pac Bio
Mechanism	Dideoxy chain termination	Pyroseq uencing	Detection of hydrogen ion	Ligation and two- base coding	Reversib le Nucleoti des	Single molecule real time
Read length	400-900 bp	700 bp	~400 bp	50 + 50 bp	100 bp PE	>10000 bp
Error Rate	0.001%	0.1%	2%	0.1%	2%	10-15%
Output data (per run)	100 KB	1 GB	100 GB	100 GB	1 TB	10 GB
Approx cost per GB		10,000	1000	100	10	1000

 Solution: assemble genome from short reads using computers. Whole Genome Shotgun Assembly.

Table from the course EE 372 taught by David Tse at Stanford

Current sequencing technologies

	Second gen. (Illumina)	Oxford Nanopore (Minlon)	PacBio
read length (bases)	100-500	10K-100K	10K-20K
error rates	< 1%	10-15%	10-15%
speed (time/base)	6 mins/base/strand	250 bases/s	3 bases/s
# of reads in parallel	10 ⁹	2000	150K
throughput (total # of bases/s)	3M	500K	450K

MinION, a palm-sized gene sequencer made by UK-based Oxford Nanopore Technologies

Short Reads assemble into Contigs

Figure 5.1.

Promise of Genomics

Drew Sheneman, New Jersey -- The Newark Star Ledger, E-mail Drew.

I think I found the corner piece!

How many short reads do we need?

Genome Assembly

Whole-genome "shotgun" sequencing starts by copying and fragmenting the DNA

("Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

35bp

Copy GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

by GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

PCR: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT

GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT

GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT

GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Courtesy of **Ben Langmead**. Used with permission.

Assembly

Assume sequencing produces such a large # fragments that almost all genome positions are *covered* by manyfragments...

...but we don't know what came from where

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

CTCTAGGCCCTCAATTTTT

TCTATATCTCGGCTCTAGG

this

GGCTCTAGGCCCTCATTTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

GGCGTCTATATCTCG

Courtesy of **Ben Langmead**. Used with permission.

Assembly

Overlaps between short reads help to put them together

CTAGGCCCTCAATTTTT

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCCCTCA

TATCTCGACTCTAGGCC

TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCG

GGCGTCGATATCT

GGCGTCTATATCT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

177 nucleotides

35 nucleotides

Where is the Poisson?

- G genome length (in bp)
- L short read average length
- N number of short read sequenced
- λ sequencing coverage redundancy = LN/G
- x- number of short reads covering a given site on the genome

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Poisson as a limit of Binomial: For a given site on the genome for each short read Prob(site covered): p=L/G is very small. Number of attempts (short reads): N is very large. Their product (sequencing redundancy): $\lambda = NL/G$ is O(1).

What fraction of the genome is missing?

What fraction of genome is covered?

Coverage: λ=NL/G,
 X – random variable equal to the number of times a given site is covered by short reads.
 Poisson: P(X=x)= λ*exp(- λ)/x!
 P(X=0)=exp(- λ), P(X>0)=1- exp(- λ)

• Total length covered: $G^*[1-exp(-\lambda)]$

λ	2	4	6	8	10	12
Mean proportion of genome covered	.864665	.981684	.997521	.999665	.999955	.999994

Table 5.1. The mean proportion of the genome covered for different values of λ

How long should the overlap be to connect two short reads?

G

If DNA was a random chain with $p_A = p_C = p_G = p_T = 1/4$ $L_o \sim 16-20$ would be enough

$$2 \cdot G \cdot 4^{-Lo} = 2 \cdot 3x10^{9} \cdot 4^{-16} = 1.4$$

 $2 \cdot 3x10^{9} \cdot 4^{-20} = 0.0055 < < 1$

How many contigs?

G

P(short read can be extended by another short read)= $\frac{L-L_o}{G}$ =p P(short read cannot be extended by any short reads)= $e^{-pN}\approx Ne^{-\lambda}$ number of contigs= $Ne^{-pN}\approx Ne^{-\lambda}$

How many contigs?

- A given short read is the right end of a contig if and only if no left ends of other short reads fall within it.
- The left end of another short read has the probability p=(L-1)/G to fall within a given read. There are N-1 other reads. Hence the expected number of left ends inside a given shot read is $p \cdot (N-1) = (N-1) \cdot (L-1)/G \approx \lambda$
- If significant overlap required to merge two short reads is L_{ov} , modified λ is given by $(N-1) \cdot (L-L_{ov})/G$
- Probability that no left ends fall inside a short read is $exp(-\lambda)$. Thus the Number of contigs is $N_{contigs}=Ne^{-\lambda}$:

λ	0.5	0.75	1	1.5	2	3	4	5	6	7
Mean number of contigs	60.7	70.8	73.6	66.9	54.1	29.9	14.7	6.7	3.0	1.3

Table 5.2. The mean number of contigs for different levels of coverage, with G = 100,000 and L = 500.

Average length of a contig?

• Length of a genome covered: $G_{covered} = G \cdot P(X>0) = G \cdot (1 - exp(-\lambda))$

- Number of contigs $N_{contigs} = N \cdot e^{-\lambda}$
- Average length of a contig =

$$< L> = \sum_{i} L_{i}/N_{contigs} = G_{covered}/N_{contigs} =$$

$$G \cdot (1 - exp(-\lambda))/N \cdot e^{-\lambda} = L \cdot (1 - exp(-\lambda))/\lambda \cdot e^{-\lambda}$$

λ	2	4	6	8	10	
Mean contig size	1,600	6,700	33,500	186,000	1,100,000	

Table 5.3. The mean contig size for different values of a for the case L = 500.

Estimate

- Human genome is 3x10⁹ bp long
- Chromosome 1 is about G=0.25x10⁹ bp
- Illumina generates short reads L=100 bp long
- What number of reads N are needed to completely assemble the 1st chromosome?
- The formula to use is: $1=N_{contigs}=Ne^{-\lambda}=Ne^{-NL/G}$
- Answer: N=4.4x10⁷ short (100bp) reads
 Test: 4.4e7*exp(-4.4e7*100/0.25e9)=0.9997
- What coverage redundancy λ will it be? Answer: $\lambda = NL/G = 17.6$ coverage redundancy

How much would it cost to assemble human genome now?

- Human Genome Project: \$2.7 billion in 1991 dollars.
- Now a de novo full assembly of the whole human genome would now cost $3 \times 10^9 \times 17.6 / 10^6 \times 0.1$ \$/MB =\$ 5300
- 2nd genome (and after) would be even cheaper as we would already have a reference genome to which we can map short reads. (Puzzle: picture on the box)
- But, this is a naïve estimate. In reality there are complications. See next slides: