Reminder



Linear regression

The simple linear regression model 1s given by
Y=B+B,X+e=Y +¢
¢ 1s the random error term

slope [; and 1ntercept [ of the line are called
regression coefficients

Note: V', Y, X and ¢ are random variables
The minimal assumption: E(¢ | x)=0 -
E(Y| x)=py + p1x + E(e | x) =Ly + [1x
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Method of least squares

- The method of least squares 1s used to estimate the

parameters, 3, and 3, by minimizing the sum of the
squares of the vertical deviations in Figure 11-3.

Figure 11-3 Deviations of the
data from the estimated
regression model.
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Figure 11-3 Deviations of the data from the
estimated regression model.



Traditional notation

Definition

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7 — B> (11-7)

where vy = (1/n) 2 ,—; y; and X = (1/n) 2, x;.




Different types of y

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7— B> (11-7)
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where v = (1/n) 2, yv; and X = (1/n) 2, x..




The analysis of variance identity 1s

-
—

n

:S{ﬁ — 1)2== (3 —y)* + ESJU%'_.ﬁJE

[y
=
(=1

(11-24)

Symbolically,

SST = SSR + SSE

(11-25)




Multiple Linear Regression

(Chapters 12-13 in
Montgomery, Runger)



12-1: Multiple Linear Regression Model

12-1.1 Introduction

* Many applications of regression analysis
iInvolve situations in which there are more than
one regressor variable X, used to predict Y.

* Aregression model then is called a multiple
regression model.



Multiple Linear Regression Model

Y'=PBg *PiXg+ P X+ PaXg+... B X+ e

One can also use powers and products of other variables
or even non-linear functions like exp(x:) or log(x.)
instead of X5,... X, .

Example: the general two-variable quadratic
regression has 6 constants:

Y=Bo + Bixg+ By X+ Ba(xq)2 + By(X2)? + Ps (X4xp) + €
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Logistic Regression

P(y=1) = a(x1*wl + x2*w?2

+ b)
b
x1 wl l
\

t —o— P(y=
/ 1)
p) w2

X



How to know where to stop
adding new variables or
powers of old variables?



A Regression Problem

y = f(x) + noise
Can we learn f from this data?

Let’s consider three methods...
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Linear Regression
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Quadratic Regression
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Join-the-dots

Also known as piecewise
linear nonparametric
regression if that makes
you feel better
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Which is best?

Why not choose the method with the best fit to the

data?
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What do we really want?

Why not choose the method with the best fit to the

data?

“How well are you going to predict future data drawn from
the same distribution?”
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The test set method
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1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set



The test set method

1. Randomly choose
) 30% of the data to
be in a test set
2. The remainder is a
training set
3. Perform your
regression on the
X —» training set

(Linear regression example)
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The test set method

(Linear regression example)
Mean Squared Error=2.4
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1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



The test set method

—_—

X —

(Quadratic regression example)
Mean Squared Error =0.9
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1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



The test set method

(Join the dots example)
Mean Squared Error = 2.2
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1. Randomly choose
30% of the data to
be in a test set

2. The remainder is a
training set

3. Perform your
regression on the
training set

4. Estimate your
future performance
with the test set



Double descend- the main reason modern
Machine Learning works so well
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12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

Suppose the model relating the regressors
to the response is

yi:[30+lei1+ﬁ2.xi2+"‘+ﬁkxl'k+8i i:1,2,...,n

In matrix notation this model can be written as

y=XB+¢ (12-6)



12-1: Multiple Linear Regression Model

12-1.3 Matrix Approach to Multiple Linear Regression

where
| 1 x X o x| By | En
1 x X cee X €
y = y.z X=| .21 gz %k B = B:I and €= :2

Vn 1 Xnl Xn2 T Xk Bk Sy






12-1.3 Matrix Approach to Multiple Linear Regression

We wish to find the vector B that minimizes the sum of
squares of error terms:
n

L= Y & =ce= (y - XB)' (y — Xp)
1=1
oL

0=0= X - XP)-—X'y +(X'X)B

The resulting least squares estimate is

B=XXT"Xy o
/) (\\
/41/)6{/’02’ @F V///;V—(X) A"““’“Z O} Co [X/Y)






Multiple Linear Regression Model

A e
p=(XX)" Xy o pfs
l \

j=XPp=X(X'X)"'xy, W

y=Hy, and e=(I—H)y. \L
Aot XCE ) Ao

\/1@*9,/3 2 A or -6 orVHA«DW“Jf S;V‘C‘e
(7’ 7- 44) 0 L

*H(I H H - H? = H -H =0.



12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Unbiased estimators:

E(B) = E[(XX)7'X"Y]
= E[(X'X)"'X'(XB + €]
= E[(X'X)7IX'Xp + (X'X)"'X'€]

&

Covariance Matrix of Estimators:

{:--I i '[-III 1 '[-I| |2
C = [?{"}{:]_' — "f_-.“;. Ir-:-'|| '[-'|_1-
| Coo Gy Coo
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12-1: Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Individual variances and covariances:

V(B) =0°Cy j=0,1,2

l;;‘fr‘-,'lzgj., El’,r — LTE(_-I{'J,'-. ] —;_'EJ-’

In general,

cov(iP) = (X' X) ' =6 C
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12-1: Multiple Linear Regression Models

Estimating error variance ¢ 2

An unbiased estimator of error variance G, is

n

2
*f—fE‘r—SSE 12-16
Ug_n—p_ﬂ—p (12-16)

Here p=k+1 for k-variable multiple linear regression
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R% and Adjusted R?

The coefficient of multiple determination R?

LSS S
R=%,"17755,
The adjusted R?is A\
SSgf(n — p) 22
2 _ 1 _ — )

« The adjusted R~ statistic penalizes adding terms to the

MLR model.
* It can help guard against overfitting (including

regressors that are not really useful) .



How to know where to stop
adding variables?

* Adding new variables x. to MLR
watch the adjusted R?

* Once the adjusted R?
no longer increases = stop.
Now you did the best you can.



Human T cell expression data

* The matrix contains 47 expression samples from Lukk et al,
Nature Biotechnology 2010

* All samples are from T cells in different individuals

* Only the top 3000 genes with the largest variability were used

* The value is log2 of gene’s expression level in a given sample as
measured by the microarray technology

aTcell

A global map of human gene expression

Margus Lukk, Misha Kapushesky, Janne Nikkila, Helen Parkinson, Angela Goncalves,
Wolfgang Huber, Esko Ukkonen & Alvis Brazma

Affiliations | Corresponding author

Although there is only one human genome sequence, different genes are expressed in many
Nature Biotechnology 28, 322-324 (2010) | doi:10.1038/nbt0410-322 different cell types and tissues, as well as in different developmental stages or diseases. The
structure of this 'expression space' is still largely unknown, as most transcriptomics experiments
focus on sampling small regions. We have constructed a global gene expression map by
integrating microarray data from 5,372 human samples representing 369 different cell and tissue
types, disease states and cell lines. These have been compiled in an online resource

(http://www.ebi.ac.uk/gxa/array/U133A) that allows the user to search for a gene of interest and



“Let’s Make a Deal” show with Monty Hall aired
on NBC/ABC 1963-1986
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Gene Expression “Wheel of Fortune”

Each group gets a pair of genes that are known to be
correlated.

Each group also gets a random pair of genes selected by
the “Wheel of Fortune”. They may or may not be
correlated

Download (log-transformed) expression_table.mat
Run command fitlm(x,y) on assighed and random pairs

Record B, B;, R?, P-value of the slope 3, and write them
on the blackboard

Validate Matlab result for R? using your own calculations

Look up gene names (see gene_description in

your workspace) and write down a brief description of
biological functions of genes. Does their correlation
make biological sense?




Correlated pairs
plausible biological connection based

on short description
g1=1994; g2=188; group1l
g1=2872; g2=1269; group 2
g1=1321; g2=10; group 3
g1=886; g2=819; groupd
g1=2138; g2=1364; group>5

no obvious biological common function

gl=1+floor(rand.*3000); g2=1+floor(rand.*3000);
disp([g1, 82])



Random pairs
>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1;
disp([g1,82]);

>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1;
disp([g1,82]);

>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1;
disp([g1,82]);

>> g1=floor(3000.*rand)+1; g2=floor(3000.*rand)+1;
disp([g1,82]);



Matlab code

load expression_table.mat

g1=2907; g2=288;

x=exp_t(gl,:)’; y=exp_t(g2,:)’

figure; plot(x,y,'ko');

Im=fitIm(x,y)

y_fit=Im.Fitted;

hold on; plot(x,Im.Fitted,'r-');
SST=sum((y-mean(y)).*2);
SSR=sum((y_fit-mean(y)).*2);
SSE=sum((y-y_fit).72);

R2=SSR./SST

disp([gene_names(gl), gene _names(g2)]);
disp(gene_description(gl)); disp(gene_description (g2));



