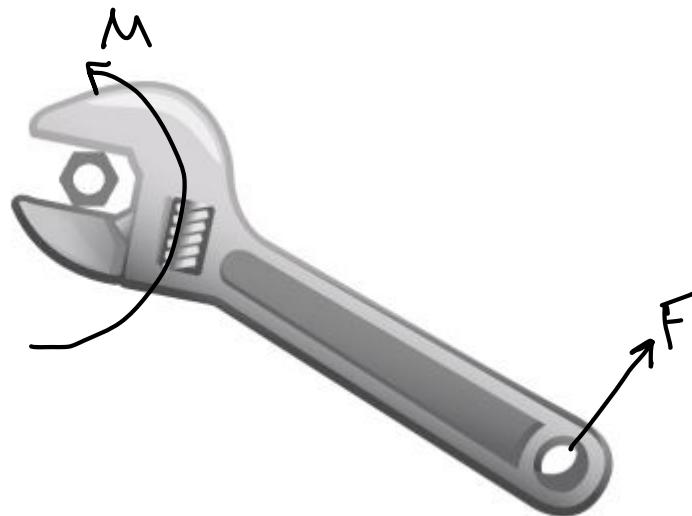
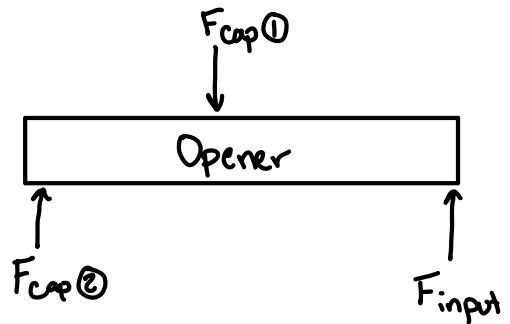


Name: _____

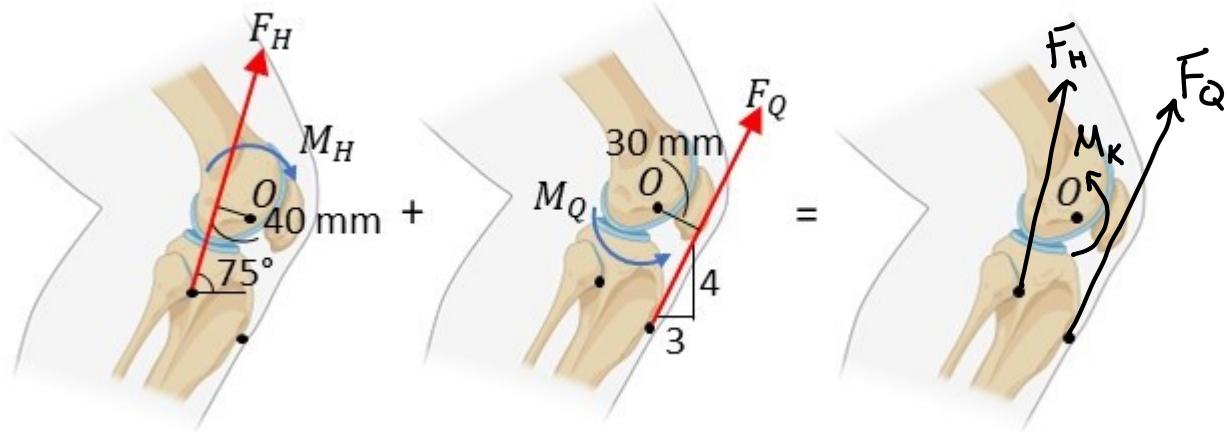

Group members: _____

TAM 210/211 - Worksheet 5


Objectives:

- Evaluate moments in 2D and 3D problems
- Obtain resultant forces and moments for equivalent systems.

1) Draw the forces and resulting moment that acts on a wrench when unfastening a nut.



2) Sketch a diagram of the forces and moments acting on the bottle opener?

3) A rotational moment in the knee is generated by the force from the hamstrings (F_H) and the force from the quadriceps (F_Q). The diagram for each muscle is given separately.

a) On the blank knee diagram, draw the forces and resulting moment that acts on the knee when it is in a flexed position.

b) The force generated by the hamstrings and the quadriceps are 845 N and 1500 N, respectively. Using Figure in part a, determine the moment of the force about point O using the scalar formulation.

$$M_H = 845(40) = 33,800 \text{ N-mm}$$

$$M_Q = 1500(30) = 45,000 \text{ N-mm}$$

$$\sum M_K = M_Q - M_H = 11,200 \text{ N-mm}$$

$$11.2 \text{ N-m}$$

c) Using Figure in problem 3.i, determine (i) the $\langle i, j, k \rangle$ components of F_H and F_Q , (ii) the moment of the force about point O using the vector formulation, and (iii) the moment of the same force about the x-axis. (iv) Is the knee flexing or extending?

$$i) F_H = 219\hat{i} + 816\hat{j} + 0\hat{k}$$

$$F_Q = 900\hat{i} + 1200\hat{j} + 0\hat{k}$$

$$ii) r_H = 38.6\hat{i} + 10.35\hat{j} + 0\hat{k}$$

$$r_Q = 18\hat{i} + 24\hat{j} + 0\hat{k}$$

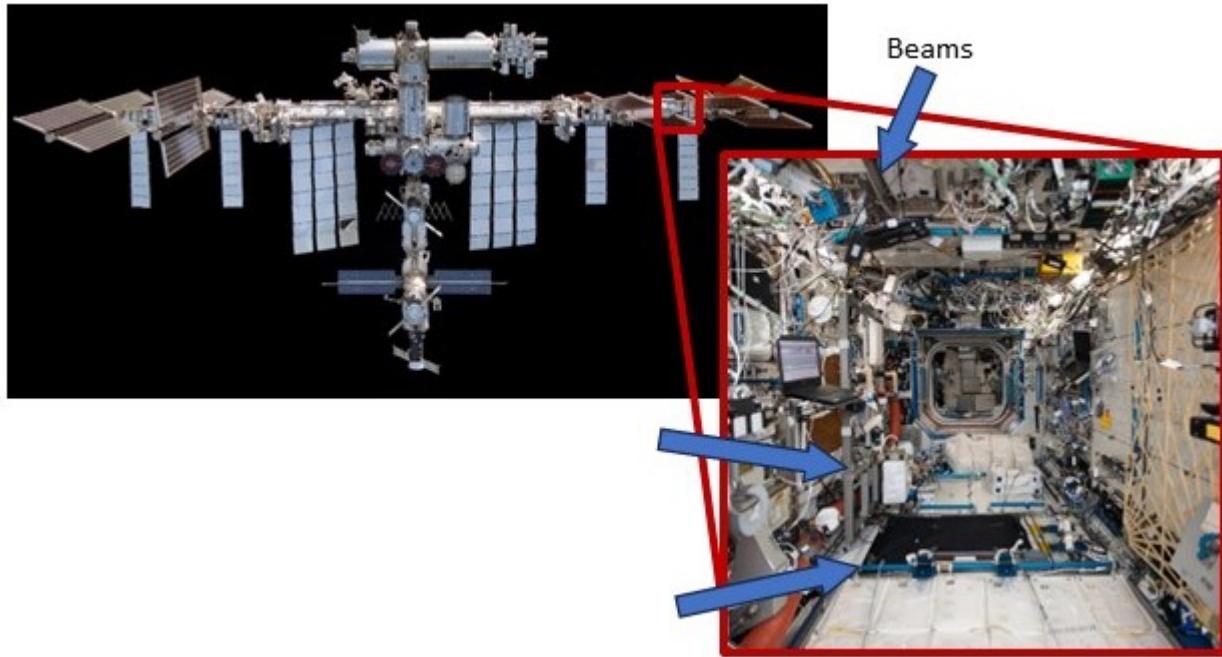
$$M_H = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 24 & -18 & 0 \\ 900 & 1200 & 0 \end{vmatrix}$$

$$= (0-0)\hat{i} - (0-0)\hat{j} + (24 \cdot 1200 + 18 \cdot 900)\hat{k}$$

$$= \langle 0, 0, 45000 \rangle \text{ N-mm} \quad \langle 0, 0, 45.0 \rangle \text{ N-m}$$

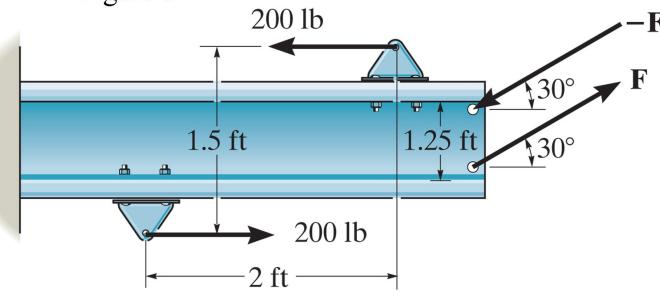
$$M_Q = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 24 & -18 & 0 \\ 900 & 1200 & 0 \end{vmatrix}$$

$$= (0-0)\hat{i} - (0-0)\hat{j} + (24 \cdot 1200 + 18 \cdot 900)\hat{k}$$


$$= \langle 0, 0, 45000 \rangle \text{ N-mm} \quad \langle 0, 0, 45.0 \rangle \text{ N-m}$$

$$\sum M_K = 45 - 33.8 = 11.2 \text{ N-m}$$

iii) 0i


iv) Extending

Rotational moments are often seen in beam applications. The following examples are of beams that could be found on a space station!

- 4) Using Figure 3, determine the magnitude of F so that the resultant couple moment is 600 lb.ft counterclockwise. Where on the beam does the resultant couple moment act?

Figure 3

$$\begin{aligned}
 & \text{vector way: } [200, 0, 0] \quad [F \cos 30^\circ, F \sin 30^\circ, 0] \\
 & \sum \vec{M} = [0, 0, -600] = (\vec{r}_1 \times \vec{F}_1) + (\vec{r}_2 \times \vec{F}_2) \\
 & \vec{r}_1 = \text{any position vector from line of action of } F_1 \text{ that is the } 200 \text{ lb force} \\
 & \vec{r}_2 = \text{ " " for } F_2 \text{ that is the unknown } \vec{F} \\
 & [0, 0, -600] = [0, 1.5, 0] \times [200, 0, 0] + [0, 1.25, 0] \times [F \cos 30^\circ, F \sin 30^\circ, 0] \\
 & F = 277.128 \text{ N}
 \end{aligned}$$

$$\begin{aligned}
 & \sum M = 600 = 200(1.5) + F(1.25 \cos 30^\circ) \\
 & \Rightarrow F = 277.128 \text{ lb} \\
 & d = 1.25 \cos 30^\circ
 \end{aligned}$$

→ Resultant couple moment can act anywhere on the beam.

5) Replace the force system acting on the beam in Figure 4 by: (a) an equivalent force and couple moment at point O, and (b) an equivalent force distance x to the right of O . Sketch your equivalent system on the right side of Figure 4.

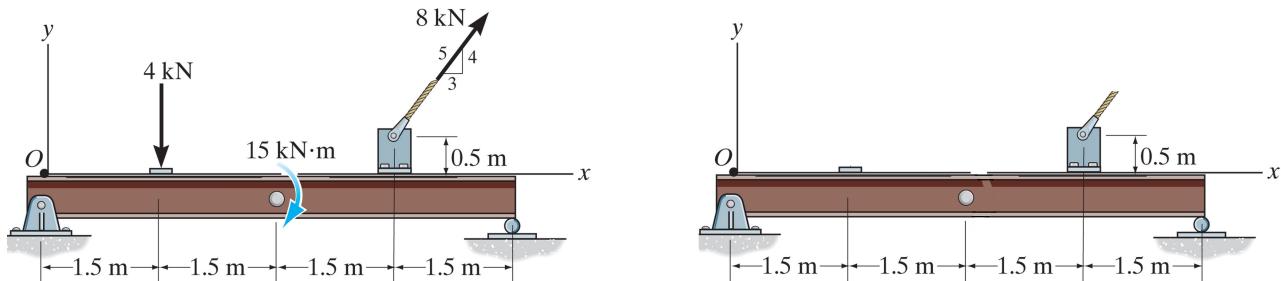


Figure 4

$$a) \sum F_x = 8 \times \left(\frac{3}{5}\right) = 4.8 \text{ kN}$$

$$\sum F_y = 8 \times \left(\frac{4}{5}\right) - 4 = 2.4 \text{ kN}$$

$$\sum M_O = -15 - 4(1.5) - (4.8 \times 0.5) + (2.4 \times 4.5) = 5.4 \text{ kN-m}$$

$$\Rightarrow F_R = \langle 4.8, 2.4, 0 \rangle \text{ kN} \Rightarrow |F_R| = 5.37 \text{ kN}$$

$$M_R = 5.4 \text{ kN-m}$$

$$b) \vec{M}_R = \vec{r} \times \vec{F} = (4, 0, 0) \times (4.8, 2.4, 0)$$

$$\Rightarrow 5.4 = 2.4 \text{ m}$$

$$\Rightarrow x = 2.25 \text{ m}$$