import numpy as np
Solving linear system of equations using Python

Let's first introduce a simple examptle, to illustrate how we can use np.linalg.solve to solve system of linear equations.

Given the equations equilibrium
2 =0=H +2F —1
ZF; =0=3F+3F —2

we can rewrite it in the form of Ax = b by defining a coefficient matrix, A, and resultant matrix b, then solve for the unknowns x = [F), F2] by:

np.array([[1, 2]. [3,-5]11)
np.array([1, 2])
np.linalg.solve(A, b)

xoRm oo p
]

array([-1., 1.])

You can use a similar approach to solve the balloon example!

Compute the cable tension

Copy below the variables provided in the Prairielearn guestion.

import numpy as np

F =45 & Lift force in N
m = 2 # Moss of balloon in kg
h = 7 & Height of balloon in m

Define weight of the balloon as the variable W . You can use gravity as 9.8 1m/s”

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)
W=m*9.81

We now want to define the unit vectors that provide the directions for force vectors Fug, Fao. and Fap.

Before wea get to that, you first need to define the coordinates of the points A, B, C, D). We store these pointsas a. b, ¢ and d respectively. We already give you the coordinates of a and b.

#grode (enter your code in this cell - DO NOT DELETE THIS LINE)
a = np.array([@,8;h])

= np.array{[-1.5,-2,8])

np.array([2,-3,8])

= np.array([e,2.5,8])

L B i R
1]

Determine the position vectors ab (from A to B}, ac (from A to C), ad (from A to D).

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)

ab=b - a
gc ='C - a
ad =d - a

Define the unit vectors. You can compute the norm of a vector using np.linalg.norm. Recal that the unit vector in the direction from A to C is defined as:
usc = racllrac

Determine the position vectors w4 p. w4¢ 3nd u 4 p and store them respectively as u_ab ., u_ac and u_ad.

#grade (enter your code -in this cell - DO NOT DELETE THIS LINE)
u_ab = ab/np.linalg.norm{ab)
u_ac = ac/np.linalg.norm{ac)
u_ad = ad/np.linalg.norm{ad)

You can now write the equations of equilibrium in the form of AX = ¥, where X is the array containing the unknown force magnitudes, X = [Fap, Fac. Fap]. We will use the following steps to solve for the unknown forces:
1} Define the coefficient matrix A, and store it as a 2d numpy array A
2) Define the resultant vector ¥, and store it as as a 1d numpy array v

3) Computs the unknown vector X by solving the linear systam of equations. Store your result as the 1d numpy array x.

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)

A = np.array([[u_ab[@],u_ac[@],u ad[@]],[u_ab[1],u ac[1],u ad[1]],[u_abf2],u ac[2],u_ad[2]]]1)
¥ np.array([@,8,W-F])

¥ = np.linalg.solvelA, ¥)

You can now define the tension in cable AD, i.e. Fyp. Store this as the variable Fad .

I [9]: #grade (enter your code in this cell - DO NOT DELETE THIS LINE)
Fad = x[2]

Compute the tension in cable AB

To complete the example below, you will use the steps below:

1. Identify the known and unknown parameters,
2. Draw the proper free-body-diagrams that best relate known/unknown parameters to each other,
3. Write the corresponding equations of eguilibrium.

4, Solve the system of equations for the desired unknowns.

Copy below the variables provided in the PrairieLearn question.
import numpy as np
m = 2 # Moss of cable EB in kg

Define weight of the connactor as the variable W . You can use gravity as 9.8 1m/s”.

#grade (enter your code in this cell - DO NOT DELETE THIS LINE)
W=m*9.81

In the cell below, write a code snippet to compute the tension in cable A B.

In summary, you will need to perform the following computations:

1) Define all the unit vectors that provide the directions for force vectors that act on connectors B and E. We give you the example for the unit vector upa and save it as BA .

2} Rewrite your equations of equilibrium in the form of AX = ¥y, where X is the array containing the unknown tension in each cable. Define the coefficient matrix A and the resultant vectory.
3) Sclve the system of equations for the unknown X,

4) Determin the tension in cable A B. Save this result as the variable T_AB .

Include all your code in the same cell. We will only check the final value for T_AB | so you can choose the variable names for all intermediate steps.

#grade (enter your code in this cell - DG NOT DELETE THIS LINE)
a8 = np.array([3.4,1,8])
b = np.arrayl([2,1.87%

gl z

BA = (a-b)/np.linalg.norm{a-b)

#grade (enter your code -in this cell - DO NOT DELETE THIS LINE)
a = np.array([3.4,1,8])

b = np.array{[2,1,8])

BA = (a-b)/np.linalg.norm(a-b)

€ = np.array([2.2,8,1])

D = np.array([2.2,8,-1])

E = np.array([1,1.2,8])

F = np.arrey([©8,1.4,1.2])

G = np.array([@,1.5,-1.1])

BC = (C-b)/np.linalg.norm{C-b)
BD = (D-b}/np.linalg.norm{D-b}
BE = (E-b}/np.linalg.norm(E-b)

EB = -BE

(F-E}/np.linalg.norm(F-E)}

EG (G-E)/np.linalg.norm(G-E)

A = np.array([[BAa[e], BC[e], BD[@], BE[@], &, 8], \
[BA[1], BC[1], BD[1], BE[1], @, O], \
[BA[2], BC[2], BD[2], BE[2], @, @], \
[e, @, @, EB[@], EF[e], EG[e@]], \
[e, @, @, EB[1], EF[1], EG[1]], \
[e, &, @, EB[2], EF[2], EG[2]]1])

¥y = np.array([@, W, 8; &, W, 2])

¥ = np.linalg.sclve(A,y)

T_AB = x[0]

T_AB

m
n
I

364.9319599999997

	KakaoTalk_20230915_214231176
	KakaoTalk_20230915_214231176_01
	KakaoTalk_20230915_214231176_02
	KakaoTalk_20230915_214231176_03
	KakaoTalk_20230915_214231176_04

