6.3 SIGNAL PROCESSING

Sources of noise

- skin motion artifact
- human error
- electronic noise (60 Hz)
- improper sampling

Angular relouites + accelerations

$$veloaty = w = \frac{\Delta \theta hip}{\Delta t}$$

Acceleration =
$$\alpha = \frac{\Delta w}{\Delta t}$$

Noise becomes a problem!

Nyquist sampling theorem: Sampling freq ≥ 2 * highest freq of actual signal of interest

http://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/Filtering/Aliasing/aliasing.htm

time

Convert to frequency domain using fast fourier transform (FFT)

How many frequencies are in this signal?

Which is the Signal? Walking -> 120 steps/minute Step trequency = 2 Hz Stride frequency = 1 Hz get this?

which marker Will we

In repitive movements -> frequencies will be at harmonics of stride frequency - Most of the data is below 6 HZ

Noise tends to be random => tends to be high frequency => show Winter text

For biomechanics >> tend to use low pass filter >> Butterworth

CAREFUL! may be activity dependent!

Butterworth not so good for step/impulse inputs

- show some videos Must choose appropriate cut off frequency CAREFUL! may be activity dependent!

- Many options We will use <u>residual</u> amalysis

For each wtoff frequency (fc); the residual (R) is difference between van data (X) and fittered data (X) of all datapoints (N)

+ Lag due to filtering

Filtering causes a phase shift in the signal → seen as a "lag" Use recursive or forward-backward filtering to get zero-lag (Matlab: filtfilt)

+ MATLAB Commands

```
Nf= Nyquist frequency
Nf= \frac{1}{2} fs
[b,a]=butter(n,wn);
y=filtfilt(b,a,x);
                                               fc (cut off freq)
No
a,b = coefficients for Butterworth filter
n = n<sup>th</sup> order filter,
wn = cutoff freq must be btw. 0.0 < wn < 1.0, where 1.0 corresponds to \frac{1}{2}
  sampling rate
filtfilt = gives zero-lag recursive filtering
y = filtered version of signal x
```

+ MATLAB Commands

Example for data collected at 100 Hz:

% filter the data

% 4th order Butterworth with 6Hz cut-off frequency

% use zero-phase forward-backward filtering

[b,a]=butter(n,wn);

y=filtfilt(b,a,x);

wn = cutoff freq must be btw. 0.0 < wn < 1.0, where 1.0 corresponds to $\frac{1}{2}$ sampling rate

What should be the values for \underline{n} and \underline{wn} ?

[b,a]=butter(4,0.12);

+ How to calculate velocity if we know position?

+ Three options:

Euler's Method (Forward Difference Method)

$$\frac{d(x_n)}{dt} = \frac{x_{n+1} - x_n}{\Delta t}$$

Backward Difference Method

$$\frac{d(x_n)}{dt} = \frac{x_n - x_{n-1}}{\Delta t}$$

Three-Point Formula (Centered-Difference Formula)

$$\frac{d(x_n)}{dt} = \frac{1}{2} \left[\frac{x_{n+1} - x_{n-1}}{\Delta t} \right]$$

+ Backward Difference Method

Just like forward, but backward

Three-Point Formula (Centered-Difference Formula)

- Average of forwards backward

ervor ~ St !!

comp. move expensive !!