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What makes X X?
(What makes Bach’s chorales Bach’s chorales?)

How the above question differs from …?



A New Learning Problem

Input Output

Concepts
Rules
Laws
…

Automatic Concept Learning



Automatic Concept Learning
From phenomenology to theory

KF

CO2
Al2O3

NaCl
H2O

Parity Rule 
(clockwise iff odd)

Pythagorean Theorem 
( a2 + b2 = c2 )

Chemical laws on compound 
formation and nomenclature

Music Music Theory



Concept Learning in a Nutshell

Concept Learner 
(auto-theorist)

Rule Executor 
(rule-based AI)

data rules/concepts

rules/concepts data

How this differs from an auto-encoder?

augment human intelligence augment human creativity

data rules and concepts data’

Information Lattice Learning (ILL)



A Learning Paradigm

• Representation: Information Lattice (IL) 
• Algorithm: Information Lattice Learning (ILL)



Representation: IL



Abstraction, Concept, Rule

An abstraction      is a partition of the data space     . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters) 

A concept is a partition cell.

concepts

{every vertebrate} 
{mammals, birds, fish, amphibians, reptiles}

X =
A =



An abstraction      is a partition of the data space     . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters) 

A concept is a partition cell.

concepts

X = { }, , , , , , (treble clef)

A = { }{ { }, , }{ }, , , ,

major minor diminished

Abstraction, Concept, Rule



An abstraction      is a partition of the data space     . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters) 

A concept is a partition cell.

concepts

X = { }, , , , , , (treble clef)

root position 1st inversion 2nd inversion

{ { }}, , }}{ , , , ,A0 = {

Abstraction, Concept, Rule



rule

0.5
0.4

0.1
X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

concepts

abstraction

Abstraction, Concept, Rule

A (probabilistic) rule is a probability distribution 
projected onto a partition



project probability

Partition Lattice Information Lattice



Bach’s Information Lattice



sonority

B in the tenor closed position

incomparable

coarser and coarser

root position 7th chord 

V7 chord

7th chord 

Bach’s Concept Lattice



Algorithm: ILL
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(linear least-squares)

Figure 1: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discriminator) takes
as inputs the student’s latest style p

hk�1i
stu and the input style p̂, and identifies a feature � through

which the two styles manifest the largest gap D(·||·). The identified feature is then made into a rule
(a constraint set �k), and augments the ruleset {�i}k

i=1. The student (generator) takes as input the
augmented ruleset to update its writing style into p

hki
stu, and favors creativity, i.e. more possibilities,

by maximizing the Tsallis entropy Sq subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative

component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p�), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (A�pstu = p�) in the student’s optimization problem (�’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.
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p

input 
data

rule ruleset

The Self-Learning Loop
A Teacher-Student Architecture: Learning by Comparison

(A(k), pA(k))
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Teacher: a Discriminative Model

The teacher solves an optimization problem:

maximize
A2PX

DKL

⇣
phk�1i
A,stu

k pA
⌘

(8.1)

subject to A /2 Phk�1i (8.2)

H(pA)  �k (8.3)

The objective function (8.1) is the Kullback-Leibler (KL) divergence (relative entropy)

between the student’s latest probabilistic model and the target probabilistic model but

after projecting both onto an abstraction space. It is important to notice that what are

compared here are not the two probabilistic models phk�1i
stu and p, but their projections onto

an abstraction space phk�1i
A,stu

and pA. Given any probability distribution qX of the input data

space X, its projection onto an abstraction A of X can be easily inferenced by aggregating

probabilities within each concept (i.e. partition cell):

qA(C) =
X

x2C

qX(x) for any A 2 PX and any C 2 A.

The constraint (8.2) restricts attention to only new and independent rules. More specif-

ically, the feasible set of candidate abstractions explicitly excludes all previously learned

rule abstractions, where in this vanilla version Phk�1i := {A
(1), . . . ,A(k�1)

} denotes the set

of all k � 1 rule abstractions extracted from the previous iterations. Later in Section 8.2,

for a more advanced teacher, the exclusion set Phk�1i will expand to abstractions from not

only all previously learned rules but also rules that can be implied from all previous rules;

further this implication will include both conceptual implications (from rule hierarchy) and

informational implication (from statistics), both of which will be detailed in Section 8.2.

The constraint (8.3) imposes a regularity condition for the expected rule to be extracted.

More specifically, we expect a “good” rule to reveal hidden probability concentrations in

the original data distribution, where the concentration is measured by setting the Shannon

entropy H below a certain threshold �k, essentially driving a probabilistic rule towards a

deterministic rule if possible. It is worth noting that this regularity (or concentration)

constraint caps the so-called entropic di�culty of a probabilistic rule, depicting how di�cult

it is for a human to memorize the rule. Intuitively, the larger the entropy is, the more

di�cult the rule is for people to memorize; or to say it another way, rules that are more

deterministic are easier for people to memorize [86]. The threshold �k is a hyper-parameter

for the kth self-learning loop which is to be pre-selected before solving the optimization

problem, and �k can vary from iteration to iteration to provide one way of personalizing the

77

Want to find the abstraction which reveals the 
largest statistical difference between the student 
and the input data.



Teacher: a Discriminative Model

{x1, x6} {x3} {x2, x4, x5}x1 x2 x3 x5 x6x4

0.1 0.1 0.1
0.2 0.2

0.3 0.30.3
0.4

The teacher solves an optimization problem:

given     , computing        is easy:p pAProjection:
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subject to A /2 Phk�1i (8.2)

H(pA)  �k (8.3)

The objective function (8.1) is the Kullback-Leibler (KL) divergence (relative entropy)

between the student’s latest probabilistic model and the target probabilistic model but

after projecting both onto an abstraction space. It is important to notice that what are

compared here are not the two probabilistic models phk�1i
stu and p, but their projections onto

an abstraction space phk�1i
A,stu

and pA. Given any probability distribution qX of the input data

space X, its projection onto an abstraction A of X can be easily inferenced by aggregating

probabilities within each concept (i.e. partition cell):

qA(C) =
X

x2C

qX(x) for any A 2 PX and any C 2 A.

The constraint (8.2) restricts attention to only new and independent rules. More specif-

ically, the feasible set of candidate abstractions explicitly excludes all previously learned

rule abstractions, where in this vanilla version Phk�1i := {A
(1), . . . ,A(k�1)

} denotes the set

of all k � 1 rule abstractions extracted from the previous iterations. Later in Section 8.2,

for a more advanced teacher, the exclusion set Phk�1i will expand to abstractions from not

only all previously learned rules but also rules that can be implied from all previous rules;

further this implication will include both conceptual implications (from rule hierarchy) and

informational implication (from statistics), both of which will be detailed in Section 8.2.

The constraint (8.3) imposes a regularity condition for the expected rule to be extracted.

More specifically, we expect a “good” rule to reveal hidden probability concentrations in

the original data distribution, where the concentration is measured by setting the Shannon

entropy H below a certain threshold �k, essentially driving a probabilistic rule towards a

deterministic rule if possible. It is worth noting that this regularity (or concentration)

constraint caps the so-called entropic di�culty of a probabilistic rule, depicting how di�cult

it is for a human to memorize the rule. Intuitively, the larger the entropy is, the more

di�cult the rule is for people to memorize; or to say it another way, rules that are more

deterministic are easier for people to memorize [86]. The threshold �k is a hyper-parameter

for the kth self-learning loop which is to be pre-selected before solving the optimization

problem, and �k can vary from iteration to iteration to provide one way of personalizing the
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Student: a Generative Model

Apply probabilistic rules, which is known as the 
rule realization problem.

Given       , compute    :ppA

x1 x2 x3 x5 x6x4{x1, x6} {x3} {x2, x4, x5}

0.30.3
0.4

? ? ? ? ? ?

not necessarily unique
which one do we prefer?

0.30.3
0.4

{x1, x2} {x3, x4} {x5, x6}

pA0

…



Student: a Generative Model

The student solves a MaxEnt problem:

maximize
phki
stu2�|X|

Sq(p
hki
stu) := (q � 1)�1

⇣
1� kphkistukqq

⌘

subject to A(i)phkistu = pA(i) , i = 1, . . . , k

Want to find the most creative probabilistic model 
which satisfies all the rules (quality) while at the 
same time enables novelty



How MUS-ROVER Self-Evolves?



Student 0

1-gram



Rule 1: order � w1,2,3,4

1-gram



Student 1

1-gram



Rule 2: mod12 � w1

11970 52 4
1 3 1086

1-gram



Student 2

1-gram



Student 22

1-gram



unlearned
1-gram
3-gram
10-gram
6-gram
7-gram
4-gram

End of Loop 10

n-gram



Music Mosaic



Happy 
Birthday

Mozart’s 
K545

melody

harmony

rhythm

texture



melody melody

Happy 
Birthday

Beethoven’s 
5th Symphony


