

Information Lattice Learning (ILL)

Haizi Yu

?

 \bigcirc

- ?
- ?
- ?
- ?

What makes X X?

(What makes Bach's chorales Bach's chorales?)

How the above question differs from ...?

A New Learning Problem

Automatic Concept Learning

Input

Output

Concepts

Rules

Laws

• • •

Automatic Concept Learning

From phenomenology to theory

Concept Learning in a Nutshell

Information Lattice Learning (ILL)

data rules and concepts data' augment human intelligence augment human creativity

How this differs from an auto-encoder?

A Learning Paradigm

- Representation: Information Lattice (IL)
- Algorithm: Information Lattice Learning (ILL)

Representation: IL

An abstraction \mathcal{A} is a partition of the data space X.

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$\mathcal{A} = \{\{x_1, x_6\}, \{x_3\}, \{x_2, x_4, x_5\}\}$$
cells (or less formally, clusters)
$$\vdots$$
concepts

A concept is a partition cell.

```
X = \{\text{every vertebrate}\}\

\mathcal{A} = \{\text{mammals, birds, fish, amphibians, reptiles}\}\
```

An abstraction A is a partition of the data space X.

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$\mathcal{A} = \{\{x_1, x_6\}, \{x_3\}, \{x_2, x_4, x_5\}\}$$
cells (or less formally, clusters)
$$\vdots$$
concepts

A concept is a partition cell.

An abstraction \mathcal{A} is a partition of the data space X.

$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$\mathcal{A} = \{\{x_1, x_6\}, \{x_3\}, \{x_2, x_4, x_5\}\}$$
cells (or less formally, clusters)
$$\vdots$$
concepts

A concept is a partition cell.

A (probabilistic) rule is a probability distribution projected onto a partition

Partition Lattice

Information Lattice

Bach's Information Lattice

Bach's Concept Lattice

Algorithm: ILL

The Self-Learning Loop

A Teacher-Student Architecture: Learning by Comparison

Teacher: a Discriminative Model

The teacher solves an optimization problem:

maximize
$$D_{KL}\left(p_{\mathcal{A},stu}^{\langle k-1\rangle} \parallel p_{\mathcal{A}}\right)$$

subject to $\mathcal{A} \notin \mathfrak{P}^{\langle k-1\rangle}$
 $H(p_{\mathcal{A}}) \leq \delta_k$

Want to find the abstraction which reveals the largest statistical difference between the student and the input data.

Teacher: a Discriminative Model

The teacher solves an optimization problem:

maximize
$$D_{KL}\left(p_{\mathcal{A},stu}^{\langle k-1\rangle} \parallel p_{\mathcal{A}}\right)$$

subject to $\mathcal{A} \notin \mathfrak{P}^{\langle k-1\rangle}$
 $H(p_{\mathcal{A}}) \leq \delta_k$

Projection: given P, computing PA is easy:

Student: a Generative Model

Apply probabilistic rules, which is known as the rule realization problem.

Given $\mathcal{P}\mathcal{A}$, compute \mathcal{P} :

.

Student: a Generative Model

The student solves a MaxEnt problem:

$$\begin{array}{ll}
\text{maximize} & S_q(p_{stu}^{\langle k \rangle}) := (q-1)^{-1} \left(1 - \| p_{stu}^{\langle k \rangle} \|_q^q \right) \\
\text{subject to} & A^{(i)} p_{stu}^{\langle k \rangle} = p_{\mathcal{A}^{(i)}}, \quad i = 1, \dots, k
\end{array}$$

Want to find the most creative probabilistic model which satisfies all the rules (quality) while at the same time enables novelty

How MUS-ROVER Self-Evolves?

Rule 1: order $\circ w_{1,2,3,4}$

Rule 2: $mod_{12} \circ w_1$

n-gram

Music Mosaic

