
Information Lattice Learning (ILL)

Haizi Yu

Music Quiz 1

?

?

Music Quiz 2

?

?

Music Quiz 3

?

?

?

?

?

Music Quiz 4

?

?

?

What makes X X?
(What makes Bach’s chorales Bach’s chorales?)

How the above question differs from …?

A New Learning Problem

Input Output

Concepts
Rules
Laws
…

Automatic Concept Learning

Automatic Concept Learning
From phenomenology to theory

KF

CO2
Al2O3

NaCl
H2O

Parity Rule
(clockwise iff odd)

Pythagorean Theorem
(a2 + b2 = c2)

Chemical laws on compound
formation and nomenclature

Music Music Theory

Concept Learning in a Nutshell

Concept Learner
(auto-theorist)

Rule Executor
(rule-based AI)

data rules/concepts

rules/concepts data

How this differs from an auto-encoder?

augment human intelligence augment human creativity

data rules and concepts data’

Information Lattice Learning (ILL)

A Learning Paradigm

• Representation: Information Lattice (IL)
• Algorithm: Information Lattice Learning (ILL)

Representation: IL

Abstraction, Concept, Rule

An abstraction is a partition of the data space . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters)

A concept is a partition cell.

concepts

{every vertebrate}
{mammals, birds, fish, amphibians, reptiles}

X =
A =

An abstraction is a partition of the data space . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters)

A concept is a partition cell.

concepts

X = { }, , , , , , (treble clef)

A = { }{ { }, , }{ }, , , ,

major minor diminished

Abstraction, Concept, Rule

An abstraction is a partition of the data space . A X

X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

cells (or less formally, clusters)

A concept is a partition cell.

concepts

X = { }, , , , , , (treble clef)

root position 1st inversion 2nd inversion

{ { }}, , }}{ , , , ,A0 = {

Abstraction, Concept, Rule

rule

0.5
0.4

0.1
X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}

concepts

abstraction

Abstraction, Concept, Rule

A (probabilistic) rule is a probability distribution
projected onto a partition

project probability

Partition Lattice Information Lattice

Bach’s Information Lattice

sonority

B in the tenor closed position

incomparable

coarser and coarser

root position 7th chord

V7 chord

7th chord

Bach’s Concept Lattice

Algorithm: ILL

Published as a conference paper at ICLR 2017

The k-th Loop student teacher

rule ruleset

music
input

�k {�i}k
i=1

p̂ p
hk�1i
stu p

hki
stu

�

The teacher solves:

maximize D

⇣
p

hk�1i
�,stu || p̂�

⌘

subject to � 2 �\�hk�1i

(discrete optimization)

The student solves:

maximize Sq

⇣
p

hki
stu

⌘

subject to p
hki
stu 2 �1

· · ·

p
hki
stu 2 �k

(linear least-squares)

Figure 1: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discriminator) takes
as inputs the student’s latest style p

hk�1i
stu and the input style p̂, and identifies a feature � through

which the two styles manifest the largest gap D(·||·). The identified feature is then made into a rule
(a constraint set �k), and augments the ruleset {�i}k

i=1. The student (generator) takes as input the
augmented ruleset to update its writing style into p

hki
stu, and favors creativity, i.e. more possibilities,

by maximizing the Tsallis entropy Sq subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative

component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p�), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (A�pstu = p�) in the student’s optimization problem (�’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.

2

p

input
data

rule ruleset

The Self-Learning Loop
A Teacher-Student Architecture: Learning by Comparison

(A(k), pA(k))

A(k)

n
(A(i), pA(i))

ok

i=1

phkistu

Teacher: a Discriminative Model

The teacher solves an optimization problem:

maximize
A2PX

DKL

⇣
phk�1i
A,stu

k pA
⌘

(8.1)

subject to A /2 Phk�1i (8.2)

H(pA) �k (8.3)

The objective function (8.1) is the Kullback-Leibler (KL) divergence (relative entropy)

between the student’s latest probabilistic model and the target probabilistic model but

after projecting both onto an abstraction space. It is important to notice that what are

compared here are not the two probabilistic models phk�1i
stu and p, but their projections onto

an abstraction space phk�1i
A,stu

and pA. Given any probability distribution qX of the input data

space X, its projection onto an abstraction A of X can be easily inferenced by aggregating

probabilities within each concept (i.e. partition cell):

qA(C) =
X

x2C

qX(x) for any A 2 PX and any C 2 A.

The constraint (8.2) restricts attention to only new and independent rules. More specif-

ically, the feasible set of candidate abstractions explicitly excludes all previously learned

rule abstractions, where in this vanilla version Phk�1i := {A
(1), . . . ,A(k�1)

} denotes the set

of all k � 1 rule abstractions extracted from the previous iterations. Later in Section 8.2,

for a more advanced teacher, the exclusion set Phk�1i will expand to abstractions from not

only all previously learned rules but also rules that can be implied from all previous rules;

further this implication will include both conceptual implications (from rule hierarchy) and

informational implication (from statistics), both of which will be detailed in Section 8.2.

The constraint (8.3) imposes a regularity condition for the expected rule to be extracted.

More specifically, we expect a “good” rule to reveal hidden probability concentrations in

the original data distribution, where the concentration is measured by setting the Shannon

entropy H below a certain threshold �k, essentially driving a probabilistic rule towards a

deterministic rule if possible. It is worth noting that this regularity (or concentration)

constraint caps the so-called entropic di�culty of a probabilistic rule, depicting how di�cult

it is for a human to memorize the rule. Intuitively, the larger the entropy is, the more

di�cult the rule is for people to memorize; or to say it another way, rules that are more

deterministic are easier for people to memorize [86]. The threshold �k is a hyper-parameter

for the kth self-learning loop which is to be pre-selected before solving the optimization

problem, and �k can vary from iteration to iteration to provide one way of personalizing the

77

Want to find the abstraction which reveals the
largest statistical difference between the student
and the input data.

Teacher: a Discriminative Model

{x1, x6} {x3} {x2, x4, x5}x1 x2 x3 x5 x6x4

0.1 0.1 0.1
0.2 0.2

0.3 0.30.3
0.4

The teacher solves an optimization problem:

given , computing is easy:p pAProjection:

maximize
A2PX

DKL

⇣
phk�1i
A,stu

k pA
⌘

(8.1)

subject to A /2 Phk�1i (8.2)

H(pA) �k (8.3)

The objective function (8.1) is the Kullback-Leibler (KL) divergence (relative entropy)

between the student’s latest probabilistic model and the target probabilistic model but

after projecting both onto an abstraction space. It is important to notice that what are

compared here are not the two probabilistic models phk�1i
stu and p, but their projections onto

an abstraction space phk�1i
A,stu

and pA. Given any probability distribution qX of the input data

space X, its projection onto an abstraction A of X can be easily inferenced by aggregating

probabilities within each concept (i.e. partition cell):

qA(C) =
X

x2C

qX(x) for any A 2 PX and any C 2 A.

The constraint (8.2) restricts attention to only new and independent rules. More specif-

ically, the feasible set of candidate abstractions explicitly excludes all previously learned

rule abstractions, where in this vanilla version Phk�1i := {A
(1), . . . ,A(k�1)

} denotes the set

of all k � 1 rule abstractions extracted from the previous iterations. Later in Section 8.2,

for a more advanced teacher, the exclusion set Phk�1i will expand to abstractions from not

only all previously learned rules but also rules that can be implied from all previous rules;

further this implication will include both conceptual implications (from rule hierarchy) and

informational implication (from statistics), both of which will be detailed in Section 8.2.

The constraint (8.3) imposes a regularity condition for the expected rule to be extracted.

More specifically, we expect a “good” rule to reveal hidden probability concentrations in

the original data distribution, where the concentration is measured by setting the Shannon

entropy H below a certain threshold �k, essentially driving a probabilistic rule towards a

deterministic rule if possible. It is worth noting that this regularity (or concentration)

constraint caps the so-called entropic di�culty of a probabilistic rule, depicting how di�cult

it is for a human to memorize the rule. Intuitively, the larger the entropy is, the more

di�cult the rule is for people to memorize; or to say it another way, rules that are more

deterministic are easier for people to memorize [86]. The threshold �k is a hyper-parameter

for the kth self-learning loop which is to be pre-selected before solving the optimization

problem, and �k can vary from iteration to iteration to provide one way of personalizing the

77

Student: a Generative Model

Apply probabilistic rules, which is known as the
rule realization problem.

Given , compute :ppA

x1 x2 x3 x5 x6x4{x1, x6} {x3} {x2, x4, x5}

0.30.3
0.4

? ? ? ? ? ?

not necessarily unique
which one do we prefer?

0.30.3
0.4

{x1, x2} {x3, x4} {x5, x6}

pA0

…

Student: a Generative Model

The student solves a MaxEnt problem:

maximize
phki
stu2�|X|

Sq(p
hki
stu) := (q � 1)�1

⇣
1� kphkistukqq

⌘

subject to A(i)phkistu = pA(i) , i = 1, . . . , k

Want to find the most creative probabilistic model
which satisfies all the rules (quality) while at the
same time enables novelty

How MUS-ROVER Self-Evolves?

Student 0

1-gram

Rule 1: order � w1,2,3,4

1-gram

Student 1

1-gram

Rule 2: mod12 � w1

11970 52 4
1 3 1086

1-gram

Student 2

1-gram

Student 22

1-gram

unlearned
1-gram
3-gram
10-gram
6-gram
7-gram
4-gram

End of Loop 10

n-gram

Music Mosaic

Happy
Birthday

Mozart’s
K545

melody

harmony

rhythm

texture

melody melody

Happy
Birthday

Beethoven’s
5th Symphony

