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3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give a visual 1dea of how this series of processes approaches a language, typical sequences 1n the approx-
imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HIQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

(Shannon, 1948)



5. First-order word approximation. Rather than continue with tetragram, . .. , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further struc-
ture 1s included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
these samples have reasonably good structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more
words can easily be placed in sentences without unusual or strained constructions. The particular sequence
of ten words “attack on an English writer that the character of this™ 1s not at all unreasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.

(Shannon, 1948)



4. GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS

Stochastic processes of the type described above are known mathematically as discrete Markoff processes
and have been extensively studied in the literature.® The general case can be described as follows: There
exist a finite number of possible “states” of a system; S1,52,...,5:. In addition there 1s a set of transition
probabilities; p;(j) the probability that if the system is in state S; it will next go to state S;. To make this
Markoff process into an information source we need only assume that a letter i1s produced for each transition
from one state to another. The states will correspond to the “residue of influence” from preceding letters.
The situation can be represented graphically as shown in Figs. 3, 4 and 5. The “states” are the junction

D 2

Fig. 3— A graph corresponding to the source in example B.

(Shannon, 1948)
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In the footnote to this conclusion he considers the possibility of a useful probabilistic/statistical model,
saying "'[ would certainly not care to argue that ... 1s unthinkable, but I know of no suggestion to this
effect that does not have obvious flaws.” The main "obvious flaw” 1s thus: Consider:

I never, ever, ever, ever, ... fiddle around 1n any way with electrical equipment.

. She never, ever, ever, ever, ... fiddles around 1n anv way with electrical equipment.
. * I never, ever, ever, ever, ... fiddles around in anv wav with electrical equipment.
_® She never, ever, ever, ever, ... fiddle around 1n anv way with electrical equipment.

e Lad P e

No matter how many repetitions of "ever” vou insert, sentences 1 and 2 are grammatical and 3 and 4 are
ungrammatical. A probabilistic Markov-chain model with » states can never make the necessary
distinction (between 1 or 2 versus 3 or 4) when there are more than » copies of "ever.”" Therefore, a
probabilistic Markov-chain model cannot handle all of English.

This criticism 1s correct, but it 15 a criticism of Markov-chain models—it has nothing to do with
probabilistic models (or trained models) at all. Moreover, since 1957 we have seen many tvpes of
probabilistic language models beyond the Markov-chain word models. Examples 1-4 above can in fact
be distinguished with a finite-state model that 1s not a chain, but other examples require more
sophisticated models. The best studied 15 probabilistic context-free grammar (PCF(G), which operates
over trees, categories of words, and individual lexical items, and has none of the restrictions of finite-
state models. We find that PCF Gs are state-of-the-art for parsing performance and are easier to learn
from data than categorical context-free grammars. Other types of probabilistic models cover semantic

https://norvig.com/chomsky.html



Generative Grammar




Context-free grammar

From Wikipedia, the free encyclopedia

In formal language theory, a context-free grammar (CFG) is a formal grammar

{Stmt)
whose production rules are of the form T .. . B, st
(Expry (O0pir)y (Expr)
)
A — o ¥ (Optr}
_ . . ) . *  (Expr
with A a single nonterminal symbaol, and ¢ a string of terminals and/or N
- - e - . ] {5tmt}
nonterminals (¢ can be empty). A formal grammar is "context free" if its (Stmt) — (Id) = (Expr} ; I StnrList] I
) ) i (Stmt) = | {StmtList) ] TatY ;
production rules can be applied regardless of the context of a nonterminal. No (Stmt) — if ¢ (Expr) ) (Stmt) LERLD )
; . . ) . {StmitList) — (Stmt) W
matter which symbols surround it, the single nonterminal on the left hand side (StmiList) —» (StmtList) (Stmt) ) - e
can always be replaced by the right hand side. This is what distinguishes it from EF"'? el {Num)
. ) : pry) |.--'"-[||. ) . 0 I:H‘I]]Ll:l
a context-sensitive grammar. (Expr) — (Expr) (Opir} {Expr} i oy :
{Id) = x R Eoxpr
¥ {Expr}
A formal grammar is essentially a set of production rules that describe all ﬂ[‘f“li o {Expr] {Optr) {Expr)
! I}
possible strings in a given formal language. Production rules are simple (Num) — 1 v {Optr)
. ) Num) = 9 TTH {Expr)
replacements. For example, the first rule in the picture, {Optr) — > R
{Optr) — + if { x > s 3{ x = 0 ¥y = 7y + 1)

(Stmt) — (Id) = (Expr);
Simplified excerpt of the formal grammar” for the C programming language (left), and a derivation of a =

piece of C code {right) from the nonterminal symbol {Stmt]l. Monterminal and terminal symbols are shown in
blue and red, respectively.

replaces (Stmt) with (Id) = (Expr};. There can be multiple replacement
rules for a given nonterminal symbol. The language generated by a grammar is
the set of all strings of terminal symbols that can be derived, by repeated rule
applications, from some particular nonterminal symbol ("start symbol").
Nonterminal symbols are used during the derivation process, but do not appear in its final result string.



What did Chomsky mean, and is he right?

[ take Chomsky's points to be the following:

A Statistical language models have had engineering success, but that 1s irrelevant to science.

B. Accurately modeling linguistic facts 1s just butterfly collecting; what matters in science (and
spectficallyv linguistics) 1s the underlving principles.

C. Statistical models are incomprehensible; they provide no insight.

D). Statistical models mav provide an accurate simulation of some phenomena, but the simulation 13
done completely the wrong way; people don't decide what the third word of a sentence should be
bv consulting a probability table keved on the previous two words, rather thev map from an
internal semantic form to a syntactic tree-structure, which 1s then lineanzed into words. This 13
done without any probability or statistics.

E. Statistical models have been proven incapable of learning language; therefore language must be
innate_ so why are these statistical modelers wasting their time on the wrong enterprise?

https://norvig.com/chomsky.html



Is he right? That's a long-standing debate. These are myv answers:

A T agree that engineering success 1s not the goal or the measure of science. But I observe that
science and engineering develop together, and that engineering success shows that something 1s
working right, and so 1s evidence (but not proof) of a scientificallv successful model.

B. Science 1s a combination of gathering facts and making theories; netther can progress on 1ts own. [
think Chomsky 1s wrong to push the needle so far towards theory over facts; in the history of
science, the laborious accumulation of facts 1s the dominant mode, not a novelty. The science of
understanding language 1s no different than other sciences in this respect.

C. I agree that 1t can be difficult to make sense of a model containing billions of parameters.
Certainly a human can't understand such a model by inspecting the values of each parameter
individually. But one can gain insight by examing the properties of the model—where 1t succeeds
and fails, how well it learns as a function of data, etc.

https://norvig.com/chomsky.html



D._ I agree that a Markov model of word probabilities cannot model all of language. It 1s equally true
that a concise tree-structure model without probabilities cannot model all of language. What 1s
needed 15 a probabilistic model that covers words, trees, semantics, context, discourse, etc.
Chomsky dismisses all probabilistic models because of shortcomings of particular 30-vear old
models. [ understand how Chomsky arrives at the conclusion that probabilistic models are
unnecessary, from his study of the generation of language. But the vast majority of people who
studv interpretation tasks, such as speech recognition, quickly see that interpretation 15 an
inherently probabilistic problem: given a stream of noisy input to my ears, what did the speaker
maost likely mean? Einstein said to make everything as simple as possible, but no simpler. Many
phenomena 1n science are stochastic, and the simplest model of them 1s a probabilistic model; I
believe language 15 such a phenomenon and therefore that probabilistic models are our best tool
for representing facts about language, for algorithmically processing language, and for
understanding how humans process language.

https://norvig.com/chomsky.html



Learning Bounded Context-Free-Grammar via LSTM and the Transformer:
Difference and Explanations

Hui Shi ', Sicun Gao ', Yuandong Tian *, Xinyun Chen *, Jishen Zhao'

!University of California San Diego, “Facebook Al Research, *University of California, Berkeley
{hshi, jzhao, sicung } @ucsd.edu, yuandong @ fb.com, xinyun.chen@berkeley.edu

Evaluating the Ability of LSTMs to Learn Context-Free Grammars

Luzi Sennhauser Robert C. Berwick
Federal Institute of Technology LIDS, Room 32-D728
Zurich, Switzerland Massachusetts Institute of Technology
Massachusetts Institute of Technology Cambridge, MA, USA
Cambridge, MA, USA berwick@csail.mit.edu

luzisf@student .ethz.ch

Can one learn a language model for a (probabilistic) context-free
grammar source and do information-theoretic probing of what rules
are learned?
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An example of applying a shared MLP depending on two last inputs. Inputs are denoted by blue nodes
(bottom), intermediate representations are denoted by orange nodes (middle), and output probabilities
are denoted by green nodes (top). Notice that a probability 0, is not dependent on x;

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]
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RNN block
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An example of applying an RNN depending on two last inputs. Inputs are denoted by blue nodes
(bottom), intermediate representations are denoted by orange nodes (middle), and output

probabilities are denoted by green nodes (top). Notice that compared to the approach with a
shared MLP, there is an additional dependency between intermediate nodes h;

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]



CausalConviD(B)

CausalConvlD(B)
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An example of applying causal convolutions. The kernel size is 2, but by applying dilation in higher
layers, a much larger input could be processed (red edges), thus, a larger memory is utilized. Notice
that the first layers must be option A to ensure proper processing

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]



Language Model

P(wl,u,'rg,...,wn) :P(‘wﬂ (‘wz\wﬂ (wS‘wlan)-"p(wn‘wlan:":wn—l)

= Hp(wi\wl, ey Wi_1) (1)

S = Where are we going

Previous words Word being
(Context) predicted

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

https://thegradient.pub/understanding-evaluation-metrics-for-language-models/



Self-Supervision and Cloze Task

Exploring Mars

Today in the Discovery Lab we learned about three types of spacecraft that

are helping us explore

hars E spacecraft
s SThe

: are on Mrs. Bratt’s Principal’s Reading

orbiter
Challenge board. One type of spacecraft is the

Mars. The orbiter takes p

Another type of spac . The lander has a robotic

that digs up Martian “spacecraft is the __ Arover

named on Mars in August 2012,




https://transformer.huggingface.co/



CTRL: A CONDITIONAL TRANSFORMER LANGUAGE
MODEL FOR CONTROLLABLE GENERATION

Nitish Shirish Keskar, Bryvan McCann, Lav R. Varshney, Caiming Xiong, Richard Socher
Salesforce Research!

ABSTRACT

Large-scale language models show promising text generation capabilities, but
users cannot easily control particular aspects of the generated text. We release
CTRL, a 1.63 billion-parameter conditional transformer language model, trained
to condition on control codes that govern style, content, and task-specific behav-
ior. Control codes were derived from structure that naturally co-occurs with raw
text, preserving the advantages of unsupervised learning while providing more
explicit control over text generation. These codes also allow CTRL to predict
which parts of the training data are most likely given a sequence. This provides
a potential method for analyzing large amounts of data via model-based source
atinbution. We have released multiple full-sized, pretrained versions of CTRL at
https://github.com/salesforce/ctrl.



Conditional Generation (CTRL Codes)

Links https://www.cnn.com/2007/09/20/us-president-meets-british-pm

LONDON, England (CNN) — U.S. President George W. Bush met with British Prime Minister Tony
Blair on Monday to discuss the war in Irag, according to a statement from Blair’s office.\n\nThe
meeting was held at 10 Downing Street and lasted about an hour.'.n\n"The two leaders discussed
Irag and other international issues of mutual concern,” said Blair.\.n'\ nBush, who 1s scheduled to
meet Wednesday with Russian President Vladimir Putin, will also visit Germany for talks later this
week.\n'\nlIn his statement, Blair said, "We agreed that we should continue our efforts together to
bring peace and stability to Irag. We both reaffirmed our commitment to working closely together,
as well as to continuing to work constructively toward achieving lasting security and prosperity
throughout the Middle East region.” " n\ nBush’s trip comes after he visited Britain last week where he
spoke out against terrorism while visiing Buckingham Palace.\ n‘\ nHe has been cnticized by some
lawmakers over what they say are insufficient military resources being devoted to fighting terrorism.



Data

We train on 140 GB of text drawing from a wide vanety of domains: Wikipedia (En, De, Es, Fr),
Project Gutenberg', submissions from 45 subreddits, OpenWebText*, a large collection of news
data (Hermann et al., 2015; Barrault et al., 2019; Sandhaus, 2008; Grusky et al., 2018), Amazon
Reviews (McAuley et al., 2015), Europarl and UN data from WMT (En-De, En-Es, En-Fr) (Barrault
et al., 2019), guestion-answer pairs (no context documents) from ELIS (Fan et al., 2019) and the
MRQA shared task®, which includes the Stanford Question Answering Dataset (Rajpurkar et al.,
2016), NewsQA (Tnschler et al., 2016), TriviaQA (Joshi et al., 2017), SearchQA (Dunn et al.,
2017), HotpotQA (Yang et al., 2018), and Natural Questions (Kwiatkowski et al., 2019). A full
account of training data and associated control codes can be found in Table 7 in the Appendix.

'We use a modified version of https: //github. com/chiphuyen/lazynlp
*We use a modified version of https://github.com/ jepeterson/openwebtext . git
‘https://github.com/mrga/MRQA-Shared-Task-2019



Tokenization

We learn BPE (Sennrich et al., 2015) codes and tokemze the data using fastBPE*, but we use a
large vocabulary of roughly 250K tokens. This includes the sub-word tokens necessary to mitigate
problems with rare words, but 1t also reduces the average number of tokens required to generate long
text by including most common words. We use Enghish Wikipedia and a 5% split of our collected
OpenWebText data for learming BPE codes. We also introduce an unknown token so that during
preprocessing we can filter out sequences that contain more than 2 unknown tokens. This, along with
the compressed storage for efficient tramming (TFRecords) (Abadi et al., 2016), reduces our training
data to 140 GB from the total 18() GB collected. Data was treated as a single stream of tokens with
non-domain control codes inserted where appropriate (often at document boundaries).



Tokenization for Controllable Generation

The stream
was chunked into contiguous sequences of tokens. Each sequence originated from a domain, and

it has the corresponding domain control code prepended as the first token in the sequence. In this
way, domain control codes receive special treatment (Kobus et al., 2016). They are propagated to
all text in the domain as the first token. This is similar to how codes and natural language sequences
have been used in multi-task settings (Wu et al., 2016; Johnson et al., 2017; McCann et al., 2018) to
control conditional language models. All other control codes are injected into the data without such
special treatment (Moryossef et al., 2019; Caswell et al., 2019). We experimented with sequence
lengths of 256 and 512 due to memory and optimization constraints. Despite training on relatively
short sequences compared to other approaches, we found that a sliding-window approach allows for
generation beyond these windows, and we also found little difference in quality between the two
models within the first 256 tokens. Further, we note that our vocabulary i1s approximately 4 times
larger than similar approaches, hence the effective sequence length in characters is comparable.



Architecture and Training Algorithms/Infrastructure

CTRL has model dimension d = 128(), inner dimension f = 8192, 48 layers, and 16 heads per layer.
Dropout with probability 0.1 follows the residual connections in each layer. Token embeddings were
tied with the final output embedding layer (Inan et al., 2016; Press & Wolf, 2016).

CTRL was implemented in TensorFlow (Abadi et al., 2016) and trained with a global batch size of
1024 distributed across 256 cores of a Cloud TPU v3 Pod for 800k iterations. Training took ap-
proximately 2 weeks using Adagrad (Duchi et al., 2011) with a linear warmup from 0 to (.05 over
25k steps. The norm of gradients were clipped to (.25 as in (Merity et al., 2017). Learning rate
decay was not necessary due to the monotonic nature of the Adagrad accumulator. We compared to
the Adam optimizer (Kingma & Ba, 2014) while training smaller models, but we noticed compa-
rable convergence rates and significant memory savings with Adagrad. We also experimented with
explicit memory-saving optimizers including SM3 (Anil et al., 2019), Adafactor (Shazeer & Stern,
2018), and NovoGrad (Ginsburg et al., 2019) with mixed results.



Attention Mechanisms
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https://towardsdatascience.com/deconstructing-bert-
distilling-6-patterns-from-100-million-parameters-
b49113672f77




Attention in Sequence-to-Sequence Models, e.g. for Translation

https://jalammar.github.io/visualizing-neural-machine-
translation-mechanics-of-seg2seqg-models-with-attention/



Attention in the Transformer Architecture

https://jalammar.github.io/illustrated-transformer/



Transformers as Universal over Domains

https://www.youtube.com/watch?v=EIlxn8rS88bl



Transformers as Universal Predictors?

1258 [EEE TRAMSACTIONS ON INFORMATION THEORY WOL., 38, MO, 4, JULY 1992

Universal Prediction of Individual Sequences

Meir Feder, Member, IEEE, Neri Merhav, Member, IEEE, and
Michael Guiman, Member, [EEE

1506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004

Finite-Memory Universal Prediction of
Individual Sequences

Eado Meron and Meir Feder, Fellow, IEEE



Transformers as Universal over Domains

Original Attention Map Last Layer

TN

Feb 2019 Jun 2019 Oct 2019

[https://magenta.tensorflow.org/music-transformer, https://www.kaggle.com/piantic/vision-transformer-vit-visualize-attention-map,
https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/]



Transformers as Universal Approximators

2 Transformer networks

A Transformer block is a sequence-to-sequence function mapping R?*" to R4*™_ It consists of
two layers: a self-attention layer and a token-wise feed-forward layer, with both layers having a
skip connection. More concretely, for an input X € R?*" consisting of d-dimensional embeddings
of n tokens, a Transformer block with multiplicative or dot-product attention [Luong et al., 2015]
consists of the following two layers':

h ) . ) )
Attn(X) = X + Z__l WLWEX - o[(Wi X)TWEX], (1)
FF(X) = Attn(X) + Wy - ReLU(W; - Attn(X) 4+ by 17) + bo17, (2)

where W5, € RY™ Wy, Wi, W5 € R™* W, € R W, € R™? b, € R? by € R”, and
FF(X) is the output of the Transformer block. The number of heads h and the head size m are two
main parameters of the attention layer; and r denotes the hidden layer size of the feed-forward layer.

Notation. Given a matrix A, we use [|A[|, to denote the entry-wise /¥ norm of A. Let o[-] be the
softmax operator, which takes a matrix as input and applies softmax operation to each column of the
matrix, which results in a column stochastic matrix, i.e., a matrix that has non-negative entries with
all columns summing to 1. We use 1,, to denote a vector of length n whose entries are all 1. We
use d and n to denote the embedding dimension and the sequence length, respectively. We assume
throughout that n > 2, as the Transformers reduce to residual networks when n = 1.



Transformers as Universal Approximators

We define the Transformer networks as the composition of Transformer blocks. The family of the
sequence-to-sequence functions corresponding to the Transformers can be defined as:

Thmr . {g: Réxn 5 Rdxn | g is a composition of Transformer blocks th'f""'“"’:i}, (3)

where t"™7 : R4*n _, R9*" denotes a Transformer block defined by an attention layer with h
heads of size m each, and a feed-forward layer with r hidden nodes.

We say that a function f : R¥*"™ — RY*™ is permutation equivariant if for any permutation matrix
P, we have f(XP) = f(X)P;ie., if we permute the columns of X, then the columns of f({X)
are permuted in the same way. A Transformer block is permutation equivariant, which we formally
prove in Section B. This consequently establishes the permutation equivariance of the class 77"

Claim 1. A Transformer block t""™" defines a permutation equivariant map from R*™ to R4*™,



Transformers as Universal Approximators

3 Transformers are universal approximators of seq-to-seq functions

In this section, we present our results showing that the Transformer networks are universal approx-
imators of sequence-to-sequence functions. Let us start by defining the target function class Fpg,
which consists of all continuous permutation equivariant functions with compact support that map
R9*m to R9%™  Here, continuity is defined with respect to any entry-wise /Z norm, 1 < p < oc.
Given two functions f;. fy : R4*" — R4*" for1 < p < oo, we define a distance between them as

/
dp(f1, f2) = (/Hfl{X] ‘fE{X]“idX)l ’

The following result shows that a Transformer network with a constant number of heads h, head size
m, and hidden layer of size r can approximate any function in Fpg.

Theorem 2. Let 1 < p < oo and € > 0, then for any given [ € Fpg, there exists a Transformer
network g € T, such that d,(f, g) < e.



Transformers as Universal Approximators

3.1 Transformers with trainable positional encodings

In order to endow the Transformer networks with the ability to capture the information about the
position of tokens in the input sequence, it is a common practice to add positional encodings E €
R9*™ to the input sequence before feeding it to the Transformer network [Vaswani et al., 2017,
Devlin et al., 2018]. Consider the functions represented by Transformers with positional encodings:

T .= {gp(X) = g(X + E) | g € T"™" and E € R}, (4)

Here we show that if E is trainable, these positional encodings are sufficient to remove the permu-
tation equivariance restriction of the Transformers. Towards this, we define Fcp to be the set of all
continuous functions that map a compact domain in R?*" to R?*"_ Note that Fcp does not have
the restriction of permutation eguivariance as in Fpg, but any f € Fep is defined on a compact
domain instead of the whole R“*™. The following result states that, equipped with the trainable
positional encodings, Transformers can approximate any sequence-to-sequence function in Fop.

Theorem 3. Let 1 < p < oo and € > 0, then for any given f € Fcp, there exists a Transformer
network g € Tpg*l‘d such that we have d,(f.g) < e.



Transformers as Universal Approximators

4 Conclusion

In this paper, we prove that Transformer networks are universal approximators of any continuous and
permutation equivariant sequence-to-sequence functions, which shed light on the expressive power
of Transformer networks. We also theoretically validate the use of additive positional encodings in
Transformers, as they can remove the permutation equivaraince restriction and make Transformers
universal approximators of arbitrary continuous sequence-to-sequence functions.

In the supplementary material, we present the proofs of our theorems, which reveal that self-attention
layers in Transformer networks can compute contextual mappings; this is one of the crucial compo-
nents that make Transformer networks universal. We also discuss and experiment with other simpler
layers that can implement weaker forms of contextual mappings.



Transformers as Universal Approximators

C Proof of Theorem 2

Recall that we want to show that given a function f € Fpg, we can find a Transformer network
g € T%44 such that d,(f.,g) < e. Without loss of generality, we can assume that the compact

support of f is contained in [0, l]dx". We achieve our desired objective in three key steps:

Step 1. Approximate Fpr with piece-wise constant functions. We first use (a variant of) the
classical result that any continuous function can be approximated up to arbitrary accuracy by piece-
wise constant functions. For 4 > 0, we define the following class of piece-wise constant functions.

Fre(9d) := {f : X ZL@GJ Ap1{X € Sp} | f is permutation equivariant, Ay, € Rdx"} :

where G5 := {0,4,...,1 — §}9*™ and, for a grid point L € G;, Sg, := 1—[;1:1 [Ty Lk i +
§) C [0, 1]9*™ denotes the associated cube of width 4.

The following result states that the underlying function f € Fpg can be approximated using the
function class Fpg(d).

Lemmad4. Forany given f € Fprand 1 < p < oc, one can find a 6* > 0 such that 3 f € Fpg(8*)
which satisfies d,,(f, f) < €/3.



Transformers as Universal Approximators

Step 2. Approximate Fpp(d) with modified Transformers. We then consider a slightly modified
architecture for Transformer networks, where the softmax operator ¢[-| and ReLLU(-) are replaced by
the hardmax operator oy |-| and an activation function ¢ € ®, respectively. Here, the set of allowed
activations @ consists of all piece-wise linear functions with at most three pieces, where at least one

1,71, T

piece is constant. Let 7_J denote the function class corresponding to the sequence-to-sequence
functions defined by the modified Transformer networks. The following result establishes that the

: . =2,1,1 : L. =
modified Transformer networks in 7'2 can closely approximate functions in Fpg(d).

Proposition 5. For each f € Fpg(d)and1 <p < oo, g € T such that d,(f,g) = O(89/7).



Transformers as Universal Approximators

Step 3. Approximate modified Transformers with (original) Transformers. Finally, we show
thatg € 7 can be approximated by 721+, Let ¢ € 7214 be such that d,(7,9) < €/3.

The following result relies on the connection between the softmax operator and the hardmax opera-
tor; and the fact each activation ¢ € ® can approximated by the sum of four ReLLU’s.

Lemma 6. For eachq € 70 and 1 <p<oo, g€ T suchthatd,(g,q) < €/3.

Theorem 2 now follows from these three steps, because we have

dp(f,9) < du(f, ?) + dp(?:ﬁ) +d,(7,9) < 2¢/3 + O{‘id@)-
Choosing 4 < §* small enough ensures thatd,,(f, g) < e. []



Allometric Scaling

* Allometry studies the relationship between body size to shape. Goes backto
D'Arcy Thompson’s On Growth and Form (1917)
* |In neurobiology, one can look at allometric scaling relationships:
* across different species with similar brain architectures [evolution],
* scaling relationships for different individuals of same species [growth],
* properties of the brain within the same individual [structure]
* The relationship between the two measured quantities is usually expressed as

a power law equation:
y = kx®

where « is the scaling exponent of the law.

 How should we interpret superlinear (&« > 1) or sublinear (o < 1) scaling?



Allometric Scaling
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E = CS?, where E and S are body and brain weights

[https://en.wikipedia.org/wiki/Brain-to-body_mass_ratio]



Allometric Scaling
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Fig. 1. Brain weights of guinea pigs (Cavia cobaya)

[Heinz Stephan, Heiko Frahm, and Georg Baron, "New and Revised Data on Volumes of Brain Structures in Insectovores and Primates," Folia Primatol., vol. 35, pp. 1-29, 1981.]



Allometric Scaling

A ) B
T T 4 [
o gl whole brain i — whole brain
= & hiumian
E = 3r
: 2
= é baboo
E | 5
& E 2 cat goat
[ - Fal
2 = . sheap
rabibit
= 8 1 monkay
z 3
- = rat squirrel
2 i
2 E MOoUSE
g =)
= Eﬂ-—'l L
2
_.I .5 1 1 1 1 _ 1 1 1 1 1 1
i) 1 2 3 4 R K 2 3 4 &
leg braim volume [c m:‘] log brain volume [n:rnE'_

Scaling of the total basal cerebral metabolism with brain volume. The least-
square fit line for the log - log plot yields the following. (A) For the total oxygen
consumption

rate, the scaling exponent was 0.86 = 0.04 (y = 0.86x - 1.02, R?=0.989, p< 104, n=
7), and its 95% confidence interval was 0.75 to0 0.96. (B) For the total glucose
utilization rate, an identical exponent 0.86 = 0.03 was found (y = 0.86x - 0.09, R? =
0.994, p <104, n=10) and its 95% confidence interval was 0.80 to 0.91.

[Jan Karbowski, “Global and regional brain metabolic scaling and its functional consequences,” BMC Biology, 2007, 5:18.]



Are there common allometric scalings among
different kinds of networks?



Are there common allometric scalings among different
kinds of networks?

GCommon Scaling Laws for Gity
Highway Systems and the
Mammalian Neocortex s




Comparison of City Highway System and Neocortex Exponents for Quantities as a Function of Surface Area
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neocortex exponent ]
Generic Name Variable for City Highway Variable for Neocortex Neocortex Exponent

City Highways System Exponent

Surface area Land area 1 Total convoluted surface area 1

(a) No. of conduits No. of highways 0.759 (=0.083) Mo. of pyramidal neurons 34 =075

(b) Total no. of leaves Total no. exits 1.138 (+0.072) Total no. of synapses 9/8 = 1.125

(c) No. of leaves per conduit No. of exits per 0.379 (+=0.064) Mo. of synapses per neuron 3/8 = 0.375
highway

(d) Diameter of conduit Mo. of highway lanes  0.174 (+0.038) Diameter of white matter axon 1/8 = 0.125

(e) Propagation velocity Velocity of cross-city  0.108 (=0.021) Propagation velocity 1/8 = 0.125
travel of white matter axon

(f) Total surface area of conduits Total surface of 1.433 (+0.096) Total surface area of 11/8 = 1.375
highways white matter axons

Population 1.462 (=0.141)
Total volume of white y2=15
matter axons
(g) No. of compartments No. of concentric 0.390 (+0.055) Mo. of cortical areas 3/8 = 0.375

ring regions




A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist

Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution
networks.

The Origins of Scaling in Cities

Luis M. A. Bettencourt

Despite the increasing importance of cities in human societies, our ability to understand them
scientifically and manage them in practice has remained limited. The greatest difficulties to
any scientific approach to cities have resulted from their many interdependent facets, as social,
economic, infrastructural, and spatial complex systems that exist in similar but changing forms
over a huge range of scales. Here, | show how all cities may evolve according to a small set

of basic principles that operate locally. A theoretical framework was developed to predict the
average social, spatial, and infrastructural properties of cities as a set of scaling relations that
apply to all urban systems. Confirmation of these predictions was observed for thousands of
cities worldwide, from many urban systems at different levels of development. Measures of urban
efficiency, capturing the balance between sodioeconomic outputs and infrastructural costs,

were shown to be independent of city size and might be a useful means to evaluate urban
planning strategies.



Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish®
Johns Hopkins University, OpenAl OpenAl
jaredk@jhu.edu sam@openai.com
Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
henighan@openai.com tom@openal. com bchess@openai . com rewon@openai . com
Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl
scott@openai.com alec@openai.com jeffwvu@openai.com damodei@openai.com

We study empirical scaling laws for language model
performance on the cross-entropy loss. The loss scales as a
power-law with model size, dataset size, and the amount of
compute used for training, with some trends spanning more
than seven orders of magnitude. Other architectural details
such as network width or depth have minimal effects within a

wide range.



Scaling Laws for Transfer

Danny Hernandez®

Jared Kaplan™ Tom Henighan' Sam MceCandlish'

When we train increasingly large neural networks from-scratch on a fixed-size
dataset, they eventually become data-limited and stop improvingin
performance (cross-entropy loss). When we do the same for models pre-trained
on a large language dataset, the slope in performance gains is merely reduced
rather than going to zero. We calculate the effective data “transferred” from pre-
training by determining how much data a transformer of the same size would
have required to achieve the same loss when training from scratch. In other
words, we focus on units of data while holding everything else fixed. We find
that the effective data transferred is described well in the low data regime by a
power-law of parameter count and fine-tuning dataset size. We believe the
exponents in these power-laws correspond to measures of the generality of a
model and proximity of distributions (in a directed rather than symmetric
sense). We find that pre-training effectively multiplies the fine-tuning dataset



Scaling Laws Under the Microscope:
Predicting Transformer Performance from Small Scale Experiments

Maor Ivgi Yair Carmon Jonathan Berant
Tel-Aviv University Tel-Aviv University Tel-Aviv University

Neural scaling laws define a predictable relationship between a model's parameter
count and its performance after training in the form of a power law. However, most
research to date has not explicitly investigated whether scaling laws can be used to
accelerate model development. In this work, we perform such an empirical
investigation across a wide range of language understanding tasks, starting from
models with as few as 10K parameters, and evaluate downstream performance
across 9 language understanding tasks. We find that scaling laws emerge at
finetuning time in some NLP tasks, and that they can also be exploited for debugging
convergence when training large models. Moreover, for tasks where scaling laws
exist, they can be used to predict the performance of larger models, which enables
effective model selection.



Scaling Laws for Transformers

Model performance depends most strongly on scale, which consists of three factors: the
number of model parameters N (excluding embeddings), the size of the dataset D, and the
amount of compute C used for training. Within reasonable limits, performance depends
very weakly on other architectural hyperparameters such as depth vs. width.

Performance has a power-law relationship with each of the three scale factors N, D, C when
not bottlenecked by the other two, with trends spanning more than six orders of magnitude
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https://arxiv.org/pdf/2001.08361.pdf



Scaling Laws for Transformers

* Universality of overfitting: Performance improves predictably as long as we scale up N and D
in tandem, but enters a regime of diminishing returns if either N or D is held fixed while the other
increases. The performance penalty depends predictably on the ratio N%74/D, meaning that
every time we increase the model size 8x, we only need to increase the data by roughly 5x to
avoid a penalty.

[Biological 34 law?]

* Universality of training: Training curves follow predictable power-laws whose parameters are
roughly independent of the model size. By extrapolating the early part of a training curve, we can
roughly predict the loss that would be achieved if we trained for much longer.

* Transfer improves with test performance: When we evaluate models on text with a different
distribution than they were trained on, the results are strongly correlated to those on the
training validation set with a roughly constant offset in the loss —in other words, transfer to a
different distribution incurs a constant penalty but otherwise improves roughly in line with
performance on the training set.

https://arxiv.org/pdf/2001.08361.pdf



Scaling Laws for Transformers

Larger models require fewer samples

to reach the same performance

Test Loss 10

Sample efficiency: Large models are more sample-
efficient than small models, reaching the same level of
performance with fewer optimization steps and using
fewer data points.

Tokens Processed

Convergence is inefficient: When working within a fixed compute budget C but without any other
restrictions on the model size N or available data D, we attain optimal performance by training very large
models and stopping significantly short of convergence. Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to
convergence, with data requirements growing very slowly as D ~ C%27 with training compute.

https://arxiv.org/pdf/2001.08361.pdf



Loss vs Model and Dataset Size
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with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.
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