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Noise-enhanced associative memory, 

creativity, and other problems in faulty 

information processing



Motivations

• Engineering domains

• Nanoscale information fabrics

• Computational creativity (for culinary recipes)

• Scientific understanding

• Hippocampus, piriform cortex (for culinary recipes?)

• Variability is the name of the game in biology: are there 
functional benefits?



Problem of reliable communication

Arbitrarily reliable information transmission is possible at information 
rates below channel capacity

• An exponential number of possible messages

• A chosen subset of possible signals

 

Shannon (1948)







Basic Question What is possible and what is impossible in 
processing unreliable signals with unreliable circuits?



• Overall system: think of encoder noise as more channel noise

• Within decoder: combine noises, without loss of generality



Construction using low-density 
parity-check codes with noisy 
belief propagation decoder

Extends decoding threshold to 
a “decoder noise” axis

[Varshney, 2011]

Communication system with noisy channel and noisy message-

passing decoder achieves arbitrarily reliable communication



[Mackworth, 1946]

An aside: Heat stress on telegraphers



[L. R. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE Trans. Inf. 
Theory, vol. 57, pp. 4427-4444, July 2011.]



Theorem For memories constructed from components with 
noise levels within the region ℛ 𝑑𝑣, 𝑑𝑐 , achievable storage 

capacity is ℭ ≥ 1 −
𝑑𝑣

𝑑𝑐
/ 𝑑𝑣𝑑𝑐 − 1  [Varshney, 2011]

ℭ ≥ 1/34 in ℛ 3,6

Constructing reliable memories from unreliable components 

possible with linear circuit complexity

Theorem An entropy-
dissipation argument gives a 
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[Varshney, 2015]



• In the information overload regime, it is not enough to 
reliably store information forever

• We need to determine whether we have relevant data 
and how to retrieve it

• Are there similar limit theorems for content-addressable 
memory?



Olfactory cortex and hippocampus are thought to act as content-
addressable memory to allow nearest-neighbor search, etc.

http://www.flickr.com/photos/17657816@N05/

[Wilson and 
Sullivan, 2011]

Humans do fine with natural stimuli



• Wish to store a desired set of states—the memories—as 
fixed points of a network such that errors in input 
representation of a memory are corrected and the memory 
retrieved

– Nearest-neighbor search

• Many problems faced by integrated circuit designers are 
those that biology has overcome to deliver reliable, real-
time computation in neural circuits

– Not only explain certain features of the mammalian 
brain, but also impact theory and practice of nanoscale 
memory system design in big data era

• Modern coding theory: matrix of synaptic weights are like 
a code matrix

Associative memory



Olfactory cortex

Orthonasal/retronasal olfaction key to human flavor perception
• [C. Bushdid, M. O. Magnasco, L. B. Vosshall, and A. Keller, “Humans can discriminate 

more than 1 trillion olfactory stimuli,” Science, 2014.]

• [L. Secundo, K. Snitz, and N. Sobel, “The perceptual logic of smell,” Curr. Opin. 
Neurobiol., 2014.]

A computational model that reproduces certain aspects of 
associative olfactory memory
• Large capacity [T. L. White, “Olfactory Memory: the Long and 

Short of It,” Chem. Senses, 1998.]
• Noisy information processing circuitry



[Shepherd, 

2006]



“to create consists of making new combinations of 
associative elements which are useful” ― Henri Poincaré 



Computational creativity for culinary recipes

Black Tea

Bantu Beer

Beer

Strawberry

White Wine

Cooked Apple
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Chemistry [TPSA, heavy atom count, complexity, 

rotatable bond count, hydrogen bond acceptor count]

▪ Combine food chemistry and human 
flavor hedonic psychophysics data to 
predict the most pleasant foods

▪ Build computational creativity system that 
produces surprising and flavorful culinary 
recipes automatically







1. Sample from state space, 
using culturally well-
chosen sampling 
distribution

2. Rank according to 
psychophysical predictors 
of surprise and flavor

3. Select either 
automatically or semi-
automatically depending 
on human-computer 
interaction model



“I always start with one ingredient, I have to identify that 
main item first and you know, what are we going to build. You 
want to start with the really good looking zucchini that was at 
the market that day, you want to start with these cool little 
mushrooms you’ve never seen before. You want to start with 
that ingredient, begin pulling in all the flavors.” 

“For me its memory, its all on this taste memory, you don’t 
have to be a chef: anyone with a lot of experience and who 
focuses on those kind of things—you start to build out that 
memory and you start accessing and grabbing from these 
things that you’ve seen or tasted or smelled before and start 
putting them into little pairs and its one of those things that 
evolves.” 

“This ingredient grabs that one, and that ingredient grabs 
another one that you wouldn’t necessarily have thought of 
with the first one but you start building this chain and that’s 
where the really interesting things start to happen.”







http://www.flickr.com/photos/17657816@N05/

Information storage in the brain

Does the information-theoretic viewpoint provide 
insight into neural information storage and retrieval?



• Treat the brain as a noisy storage channel:

• Each potential synapse strength is a channel symbol: x when 
stored and y when retrieved

• Note that channel symbols are separated in space, not time

Model of Information Storage



• Synapses are small and noisy on average

• Heavy-tailed synaptic strength distribution

• Synaptic connectivity is sparse
• Filling fraction between 0.1 and 0.3 for various brain regions in 

various mammals [Stepanyants, et al., 2002]

• Synapses may be discrete-valued
Use optimization approach to biology for a unified theory

Neocortical L5 pyramidal neurons in young rats

Properties of Synapses



• Think of cortex as information storage device

• Beneficial to have large storage capacity

• Volume is a costly resource [Cajal, 1899]:
• material, metabolic energy, head size, etc.

• Optimize information storage capacity per unit volume

• Make predictions about physically measurable properties of 
synapses using information-theoretic optimization

Optimization Approach to Synapses



• Capacity achieving input distribution is stretched 
exponential

• Data for 637 L5 neurons [Varshney, et al., 2006]

Stretched exponential fit 
gives prediction of α = 
0.79

Experimental Test: Strength Distribution



• Data for 637 L5 neurons [Varshney, et al., 2006]

• Joint imaging and electrophysiology experiments to confirm

Power law fit gives 
prediction of optimizing 
cost function with α = 
0.77

Optimizing Cost Function



• Rather than information-theoretic limits, consider 
specific learning rule

• Obtained optimal synaptic weight distribution for 
classical perceptron (single-layer feedforward network) 
with excitatory synapses

• Contains more than 50% silent synapses, and this 
fraction increases with storage reliability

• Well-matched to data from cerebellar Purkinje cells

• Perceptrons have fairly low storage capacity



• Specific perceptron learning rule did not achieve much 
storage capacity

• Information-theoretic approach abstracted away encoding 
and decoding in neural circuits (cf. connectomics)

Neuronal Circuits (for Coding/Decoding)

Neural circuits 
have variability!



Functional benefits of variability?

[McDonnell and Ward, 2011]



Motivations

• Engineering domains

• Nanoscale information fabrics

• Computational creativity (for culinary recipes)

• Scientific understanding

• Hippocampus, piriform cortex (for culinary recipes?)

• Variability is the name of the game in biology: are there 
functional benefits?



A computational model that reproduces certain aspects of 
associative memory
• Large capacity [T. L. White, “Olfactory Memory: the Long and 

Short of It,” Chem. Senses, 1998.]
• Noisy information processing circuitry

Are there fundamental limits of such computational systems?
– Nanoscale information fabrics
– Computational creativity systems

Do the models explain experimentally measurable properties of 
neural systems?

– Synaptic microarchitecture 

Motivations



• Wish to store a desired set of states—the memories—as 
fixed points of a network such that errors in input 
representation of a memory are corrected and the memory 
retrieved

– Nearest-neighbor search

• Modern coding theory: matrix of synaptic weights are like 
a code matrix

Associative memory



• Consider a specific learning and recall algorithm, 
inspired by Shannon-theoretic limits and modern codes
• Associative memory with large capacity
• No requirement of memorizing arbitrary patterns
• Noisy recall circuits 



• Convolutional, graph code-based, associative memory 
model

• Memorize patterns with strong local correlation, with linear 
constraints within clusters, rather than arbitrary patterns

– Natural stimuli

• Clustered structure matches cortical column structure

Bipartite graph G

Architecture with overlapping clusters



[Koulakov, et al., 2011]



• Subspace learning algorithm tries to ensure weight vectors 
within clusters are orthogonal to all presented patterns and 
are sparse

• 𝒞 is the pattern retrieval capacity, exponential in the number 
of neurons

– Much better than, say, traditional Hopfield network

INPUT: Set of memories 𝒳 with 𝒳 = 𝒞, and stopping point 𝜀

OUTPUT: weights for ℓth cluster 𝑤 ℓ

Theorem Algorithm converges to a local optimum (in terms of 
weight of synapses) such that orthogonality requirement is met 

Learning algorithm



Pattern retrieval capacity

• Capacity exponential in the number of neurons

– Much better than Hopfield network which has capacity 
linear in number of neurons [McEliece et al., 1987]

• Restricting pattern set for Hopfield network utilizing neural 
cliques increased capacity of Hopfield networks to quadratic 
in number of neurons [Gripon and Berrou, 2011]

• Can bring it to exponential via probability flow argument  
[Hillar and Tran, 2014]

• (Idea of restricting pattern sets first introduced by 
Venkatesh and by Biswas in 1980s)



• Presented with noisy query, and want to recover a pattern that was 
actually memorized

• Locally based on iterative message-passing within cluster (which 
hopefully have linear constraints)

Theorem Intra-module error correction algorithm can correct at least 
one error in the query [Karbasi, et al., 2013]

• Globally use sequential peeling to transfer information in one 
cluster to help an overlapping cluster

Theorem In the limit of large graphs that meet suitable degree 
distribution constraints, the decoding algorithm will be successful 
when below a specified external error probability threshold [Karbasi, 
et al., 2013]

Introduce circuit noise

Recall algorithm





Mathematical model for recall

• A neuron can assume an integer-valued state from the set 
𝒬 = 0, ⋯ , 𝑄 − 1 , interpreted as short term firing rate

• A neuron updates its state based on the states of its 
neighbors 𝑠𝑖 𝑖=1

𝑛  as follows:

• First compute weighted sum ℎ = σ𝑖=1
𝑛 𝑤𝑖𝑠𝑖 + 𝜁, where 

𝑤𝑖  is weight of link from 𝑠𝑖 and 𝜁 is internal noise

• Then apply to h a nonlinear function 𝑓: ℝ → 𝒬

• Associative memory is represented by weighted bipartite 
graph, G, with pattern neurons and constraint neurons

• Each pattern 𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  is vector of length n, 𝑥𝑖 ∈ 𝒬

• Divide entries of each x into L overlapping subpatterns of 
lengths 𝑛1, 𝑛2, ⋯ , 𝑛𝐿



Mathematical model for recall

• Let 𝑥(𝑖) be the ith subpattern, and due to subspace 
learning, the corresponding synaptic weights 𝑊(𝑖) in the 
bipartite graph satisfy 𝑊(𝑖) ∙ 𝑥(𝑖) = 0 for all patterns 𝑥 in 
the dataset 𝒳 that has been memorized

External Errors

• Goal is to retrieve memorized pattern ො𝑥 from its corrupted 
version 𝑥 due to external errors, where external error is 
additive vector of size 𝑛 denoted by 𝑧, satisfying 𝑥 = ො𝑥 + 𝑧

Internal Noise

• Random numbers uniformly distributed in intervals −𝜐, 𝜐  
and −𝜈, 𝜈  additively affect local computations for pattern 
and constraint neurons, respectively



Two iterative algorithms

• Locally based on iterative message-passing within 
cluster (which hopefully have linear constraints)

• Globally use sequential peeling to transfer information 
in one cluster to help an overlapping cluster



(Note biologically plausible)



(Note state reversion is somewhat difficult to implement biologically)



Recall performance analysis

• If local message-passing thresholds 𝜓 and 𝜙 are chosen 
properly, then in the absence of external errors the 
constraints remain satisfied and internal noise cannot 
result in violations

• Key for making sequential peeling work

Lemma In the absence of external errors, the probability that 
a constraint neuron in cluster ℓ makes a wrong decision due 

to its internal noise is 𝑚𝑎𝑥 0, 𝜈−𝜓

𝜈
 and for a pattern neuron, 

the probability is 𝑚𝑎𝑥 0, 𝜐−𝜙

𝜐

Proof From the thresholding operation in the algorithm



Recall performance analysis

• A neural network with internal noise outperforms one 
without (while maintaining the same capacity)

• Let the fraction of external errors corrected by a noiseless 
recall algorithm after T iterations be Λ 𝑇  and that of a 
recall algorithm with internal noise be Λ𝜐,𝜈 𝑇 .  

• Further let the 𝑇 → ∞ values be Λ∗ and Λ𝜐,𝜈
∗

Theorem For appropriately chosen thresholds and the same 
capacity 𝒞, for the same realizations of external errors, 
Λ𝜐,𝜈

∗ ≥ Λ∗

Proof The noisy network can correct any external error 
pattern that the noiseless counterpart can correct (stopping 
set argument)



Stopping sets

Internal noise pushes the recall algorithm out of local minimums 
where it may be stuck



Theorem suggests only possible downside to using a noisy 
network is its possible running time in eliminating external 
errors: the noisy neural network may need more iterations to 
achieve the same error correction performance. 

Empirical experiments show that in certain scenarios, even 
the running time improves when using a noisy network

Recall performance analysis: recovery speed



Recall performance analysis: recovery speed Setting where all 
algorithms succeed



Recall performance analysis: recovery speed Setting where
algorithms may fail



• Theorem indicates our noisy neural networks outperform 
noiseless ones, but does not specify the level of errors that 
such networks can correct

• We have derived a theoretical upper bound on error 
correction performance

Recall performance analysis: error probability



Finitary simulations



Functional benefits of noise

Showed that internal noise actually improves the
performance of the recall phase while the pattern retrieval 
capacity remains exponential in the number of neurons

Cf.



Are there fundamental limits of such computational systems?



Do models explain experimentally measurable properties 
of neural systems?



Receptive field and connectome reconstruction

Can noise enhance data analysis for efficient receptive field or 
connectome reconstruction, using multi-neuron excitation?

• Message-passing algorithm for connectivity estimation 
[Fletcher, Rangan, Varshney, Bhargava, 2011]

Model for unknown 
nonlinearity and 
Poisson process

Linear connectivity 
matrix with sparse 
weights



• L. R. Varshney, P. J. Sjöström, and D. B. Chklovskii, “Optimal 
information storage in noisy synapses under resource constraints,” 
Neuron, vol. 52, pp. 409–423, Nov. 2006.

• L. R. Varshney, “Performance of LDPC codes under faulty iterative 
decoding,” IEEE Trans. Information Theory, vol. 57, pp. 4427–4444, 
July 2011.

• A. Karbasi, A. H. Salavati, A. Shokrollahi, and L. R. Varshney, “Noise 
facilitation in associative memories of exponential capacity,” Neural 
Computation, vol. 26, pp. 2493–2526, Nov. 2014.

• H. Chen, L. R. Varshney, and P. K. Varshney, “Noise-enhanced 
information systems,” Proc. IEEE, vol. 102, pp. 1607–1621, Oct. 
2014.

• F. Pinel and L. R. Varshney, “Computational Creativity for Culinary 
Recipes,” in Proc. ACM CHI, pp. 439–442 Apr. 2014.

• L. R. Varshney, J. Wang, and K. R. Varshney, “Associative algorithms 
for computational creativity,” Journal of Creativity Research, 2015.

Further details
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