Representation of Information
ECE 598 LV - Lecture 17

Lav R. Varshney
21 March 2024



Noise-enhanced associative memory,
creativity, and other problems in faulty
information processing



Motivations

* Engineering domains
* Nanoscale information fabrics
* Computational creativity (for culinary recipes)

* Scientific understanding
* Hippocampus, piriform cortex (for culinary recipes?)

* Variability is the name of the game in biology: are there
functional benefits?



Problem of reliable communication
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Arbitrarily reliable information transmission is possible at information
rates below channel capacity

An exponential number of possible messages
* A chosen subset of possible signals
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Statistical error compensation (SEC) Data driven hardware resibence (DOMR)
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Basic Question What is possible and what is impossible in
processing unreliable signals with unreliable circuits?
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* Overall system: think of encoder noise as more channel noise
* Within decoder: combine noises, without loss of generality



Communication system with noisy channel and noisy message-
passing decoder achieves arbitrarily reliable communication
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An aside: Heat stress on telegraphers
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[L. R. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE Trans. Inf.
Theory, vol. 57, pp. 4427-4444, July 2011.]



Constructing reliable memories from unreliable components
possible with linear circuit complexity

Theorem For memories constructed from components with
noise levels within the region R(d,, d.), achievable storage

capacity is € > ( — Z—Z) /(d,d, — 1) [Varshney, 2011]

0.04 ¢

Theorem An entropy-

dissipation argument gives a
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Global Data Volume in Exabytes
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80 =
=
£
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60 8 uncertain in both its expression and content.
]
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©
40 g Data quality solutions exist for
— enterprise data like customer, product,
30 % and address data, but this is only a
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Multiple sources: IDC,Cisco
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In the information overload regime, it is not enough to
reliably store information forever

We need to determine whether we have relevant data
and how to retrieve it

Are there similar limit theorems for content-addressable
memory?



Humans do fine with natural stimuli
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Olfactory cortex and hippocampus are thought to act as content-
addressable memory to allow nearest-neighbor search, etc.



Associative memory

Wish to store a desired set of states—the memories—as
fixed points of a network such that errors in input
representation of a memory are corrected and the memory
retrieved

— Nearest-neighbor search

Many problems faced by integrated circuit designers are
those that biology has overcome to deliver reliable, real-
time computation in neural circuits

— Not only explain certain features of the mammalian
brain, but also impact theory and practice of nanoscale
memory system design in big data era

Modern coding theory: matrix of synaptic weights are like
a code matrix



Olfactory cortex

Orthonasal /retronasal olfaction key to human flavor perception

e |C. Bushdid, M. O. Magnasco, L. B. Vosshall, and A. Keller, “Humans can discriminate
more than 1 trillion olfactory stimuli,” Science, 2014.]

* [L.Secundo, K. Snitz, and N. Sobel, “The perceptual logic of smell,” Curr. Opin.
Neurobiol., 2014.]

A computational model that reproduces certain aspects of

associative olfactory memory

* Large capacity |T. L. White, “Olfactory Memory: the Long and
Short of It,” Chem. Senses, 1998.]

* Noisy information processing circuitry



Sensory modalities
Vision
Colour
Shape

Sound
Frequency

Somatosensory
Temperature
Deep touch
Astringency
Light touch
Creaminess
Pain

Taste

Sweet
Umami
Salt
Sour
Bitter

Smell
Pattern

S~

Gut
Autonomic and
metabolic*
properties

Primate neocortex
Conscious
Flavour perception
Circuits

\\|

A

A

Y

Hippocampus, olfactory™ and

limbic systems)

Limbic subconscious
memory systems

Y

Hypothalamus
Feeding circuits

Human neocortex

Language circuits

Y
Amygdala
systems

Emotion
circuits

Motivation
circuits

Craving
circuits

[Shepherd,
2006]




“to create consists of making new combinations of
associative elements which are useful” — Henri Poincaré

1. Find
Problem

8. Externalize 2. Acquire
Ideas Knowledge

3. Gather
Related
Information

7. Select Best
Ideas

6. Combine

4. Incubation
Ideas

5. Generate
Ideas

[Sawyer, 2012]



Computational creativity for culinary recipes

Combine food chemistry and human
flavor hedonic psychophysics data to

predict the most pleasant foods

Psychophysical Pleasantness

Chemistry [TPSA, heavy atom count, complexity,
rotatable bond count, hydrogen bond acceptor count]

Black Tea
Bantu Beer
Beer
Strawberry
White Wine

Cooked Apple

Build computational creativity system that
produces surprising and flavorful culinary
recipes automatically




e

Cognitive Cooking
with Chef Watson

Recipes for Innovation from IBM & the Institute of Culinary Education




' 4i) Chef Watson with bon ap; X

€ - C | @ https://www.ibmchefwatson.com/app/#recipe/1933-190-604-105//27890/5025-4849/2209-2390-2019-1933-556-2686-105-190-604-1627-1586/719/0 | @

Yard To Table Plantain Borsch

HERE'S A STARTING POINT . ..

6 servings

DAIRY HERE MEAT STOCK/SQUP

5/, pup sour cream 1% thap chopped v 2cupextrafirmtofu | |3 quart canned
thyme vegetable stock

VEGETABLE 14, cup chopped cilanto~ | VINEGAR

4 cup chopped sugar 3 thep balsamic vinegars/
snap peas

1% bulb trimmed
fennel

3 cup sliced, peeled
plantain

1 cup sections with
juice, chopped banana
blossom

4 peeBAdgM8BPke vedetable stock, extra-firm tofu, and fennel to boil in large pot
2. Reduce heat, cover, and simmer about 1 hour 30 minutes BasedOn Burs’c!ﬂ
3. Transfer extra-firm tofu to wark surface; trim fat, sinew and bone and discard. From Bon Appétit
4. Ghop extra-firm tofu; cover and chill.
5. Gool vegetable stock slightly.
6. Chill uncovered in pot at least 4 hours and up to 1 day.




bonappétlt RESTAURANTS + TRAVEL ' ENTERTAINING + STYLE ' DRINKS = PEOPLE = EVENTS ' TESTKITCHEN ' VIDEO ' RECIPES = SUBSCRIBE
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BON APPETIT / ENTERTAINING + STYLE / TRENDS + NEWS 5:59 AM / JUNE 30, 2014

Former IBM Research scientist Lav Varshney presents a demo of an early version of the cognitive CREDIT: COURTESY IBM
cooking technology at |IBM Research.

How IBM's Chef Watson Actually Works
£[v ]9 RAD<] + BB Conet

WRITTEN BY ROCHELLE BILOW (=JPRINT N\ RSS

1. Sample from state space,
using culturally well-
chosen sampling
distribution

2. Rank according to

psychophysical predictors
of surprise and flavor

3. Select either
automatically or semi-
automatically depending
on human-computer
interaction model




HOME PAGE | TODAY'S PAPER | VIDEC | MOST POPULAR U.S. Edition ~

Ehe New Jork Emes " “I always start with one ingredient, [ have to identify that

T oo e memener e IMAIN item first and you know, what are we going to build. You

And Now, From 1BM, Chef Watson want to start with the really good looking zucchini that was at
T *% the market that day, you want to start with these cool little

—N A .| mushrooms you’ve never seen before. You want to start with

that ingredient, begin pulling in all the flavors.”

“For me its memory, its all on this taste memory, you don’t
— have to be a chef: anyone with a lot of experience and who
focuses on those kind of things—you start to build out that
L Wasenbest Jeoperdy dummions e 874 amory and you start accessing and grabbing from these

years ago. But can it whip up something tastyin =~ w Twi

e s= things that vou've seen or tasted or smelled before and start
I That is just one of £ 5AvI
e pee huneies 2 putting them into little pairs and its one of those things that
s ayolves.”
ot e i intelligence @ ner
On Twitter: @ n::\‘ti;les'bit& technology and
turn Watson into
sl “This ingredient grabs that one, and that ingredient grabs

another one that you wouldn’t necessarily have thought of
with the first one but you start building this chain and that’s
where the really interesting things start to happen.”



parsley

co-occurrence| shareflavor
in recipes compounds

co-occurrence

in recipes
Lprig N
same region
of world
hare flavor
mpound .
¢ o same region
of w orld
cumin, chile

ginger pepper
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Information storage in the brain

Weight change

> 4

Wiring change

-

Wiring change or
 / weight change?

Wiring change

4

Does the information-theoretic viewpoint provide
insight into neural information storage and retrieval?




Model of Information Storage

Neuron 52, 409-423, November 9, 2006

Optimal Information Storage
in Noisy Synapses under
Resource Constraints

Lav R. Varshney,"? Per Jesper Sjostrom,>
and Dmitri B. Chklovskii**

* Treat the brain as a noisy storage channel:

Present

—>

Storer

X

B

Memory
p(Y[X)

Storage Noise

In Situ Noise

Future

Retriever

—

Retrieval Noise

» Each potential synapse strength is a channel symbol: x when

stored and y when retrieved

* Note that channel symbols are separated in space, not time



Properties of Synapses
* Synapses are small and noisy on average

* Heavy-tailed synaptic strength distribution
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Neocortical L5 pyramidal neurons in young rats

* Synaptic connectivity is sparse

* Filling fraction between 0.1 and 0.3 for various brain regions in
various mammals [Stepanyants, et al., 2002]

* Synapses may be discrete-valued
Use optimization approach to biology for a unified theory



Optimization Approach to Synapses

* Think of cortex as information storage device

Beneficial to have large storage capacity

Volume is a costly resource |[Cajal, 1899]:
* material, metabolic energy, head size, etc.

Optimize information storage capacity per unit volume

Make predictions about physically measurable properties of
synapses using information-theoretic optimization



Experimental Test: Strength Distribution

 Capacity achieving input distribution is stretched
exponential

* Data for 637 L5 neurons [Varshney, et al,, 2006

Fraction of Neuron Pairs

0 1 2 3 4 5 6
Mean EPSP amplitude (mV)

Stretched exponential fit
gives prediction of a =
0.79



Optimizing Cost Function

e Data for 637 L5 neurons [Varshney, et al.,, 2006]

10r
Power law fit gives

prediction of optimizing
cost function with a =
0.77

Cost function (arbitrary units), V(x)
w

-2 0 2 4 6 8 10 12 14
Mean EPSP amplitude (mV), x

* Joint imaging and electrophysiology experiments to confirm



Neuron, Vol. 43, 745-757, September 2, 2004, Copyright ©2004 by Cell Press

Optimal Information Storage and
the Distribution of Synaptic Weights:
Perceptron versus Purkinje Cell

Nicolas Brunel,! Vincent Hakim,?
Philippe Isope,® Jean-Pierre Nadal,?
and Boris Barbour**

Rather than information-theoretic limits, consider
specific learning rule

Obtained optimal synaptic weight distribution for
classical perceptron (single-layer feedforward network)
with excitatory synapses

Contains more than 50% silent synapses, and this
fraction increases with storage reliability

Well-matched to data from cerebellar Purkinje cells
Perceptrons have fairly low storage capacity



Neuronal Circuits (for Coding/Decoding)

* Specific perceptron learning rule did not achieve much

storage capacity

* Information-theoretic approach abstracted away encoding
and decoding in neural circuits (cf. connectomics)
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Neural circuits
have variability!



Functional benefits of variability?

Table 1 | Representative experimental and modelling studies of stochastic resonance (in chronological order)

Approach

Experimental
studies

System, or level of
organization

Shark multimodal
sensory cell

Cricket cercal
receptor — innervating
interneurons

Human muscle spindle
afferents in arm

Whole human brain

Technique, or
level of detail *

Extracellular
recording

Intracellular
recording

Extracellular
recording

EEG

Signal and noise

Ramped temperature,
and electrical current
changes and intrinsic

noise in neurons

23-Hz sinusoidal and
5—400-Hz broadband
modulation of

air current, and
5—-400-Hz white
noise-modulated air
currents

0.5-Hz sinusoidal
rotation of arm and
random stretching of
tendon

5-dB sensation level,
1000-Hz and 500-Hz
pure tones and
broadband acoustic
noise

Result*

Information-
transmitting spikes
generated, allowing
dual coding of
temperature and
electrical fields

SNR (23-Hz signal) and
mutual information
{broadband signal)

enhanced by noise

SNR of afferent firing
at signal frequency
enhanced by noise

Neural synchrony
within (40-Hz
transient response)
and between (B, a
and y frequency
bands) brain regions
enhanced by noise

Function in vivo or
proposed computation

Water temperature and
depth sensing, and prey
detection

Predator avoidance

Movement sensation

Auditory processing

[McDonnell and Ward, 2011]



Motivations

* Engineering domains
* Nanoscale information fabrics
e Computational creativity (for culinary recipes)

* Scientific understanding
* Hippocampus, piriform cortex (for culinary recipes?)

* Variability is the name of the game in biology: are there
functional benefits?



Motivations

A computational model that reproduces certain aspects of
associative memory

* Large capacity |T. L. White, “Olfactory Memory: the Long and
Short of It,” Chem. Senses, 1998.]

* Noisy information processing circuitry

Are there fundamental limits of such computational systems?
— Nanoscale information fabrics

— Computational creativity systems

Do the models explain experimentally measurable properties of
neural systems?

— Synaptic microarchitecture



Associative memory

 Wish to store a desired set of states—the memories—as
fixed points of a network such that errors in input

representation of a memory are corrected and the memory
retrieved

— Nearest-neighbor search

 Modern coding theory: matrix of synaptic weights are like
a code matrix
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inspired by Shannon-theoretic limits and modern codes

* Associative memory with large capacity
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Architecture with overlapping clusters

(1) (2) 3)
G G G

* Convolutional, graph code-based, associative memory
model

 Memorize patterns with strong local correlation, with linear
constraints within clusters, rather than arbitrary patterns

— Natural stimuli
e (lustered structure matches cortical column structure



[Koulakov, et al., 2011]



Learning algorithm

* Subspace learning algorithm tries to ensure weight vectors
within clusters are orthogonal to all presented patterns and
are sparse

* (Cisthe pattern retrieval capacity, exponential in the number
of neurons

— Much better than, say, traditional Hopfield network

INPUT: Set of memories X with |X'| = C, and stopping point &
OUTPUT: weights for ¢th cluster w®

Theorem Algorithm converges to a local optimum (in terms of
weight of synapses) such that orthogonality requirement is met



Pattern retrieval capacity

Capacity exponential in the number of neurons

— Much better than Hopfield network which has capacity
linear in number of neurons |[McEliece et al., 1987

Restricting pattern set for Hopfield network utilizing neural
cliques increased capacity of Hopfield networks to quadratic
in number of neurons |Gripon and Berrou, 2011

Can bring it to exponential via probability flow argument
|Hillar and Tran, 2014

(Idea of restricting pattern sets first introduced by
Venkatesh and by Biswas in 1980s)



Recall algorithm

* Presented with noisy query, and want to recover a pattern that was
actually memorized

* Locally based on iterative message-passing within cluster (which
hopefully have linear constraints)

Theorem Intra-module error correction algorithm can correct at least
one error in the query [Karbasi, et al., 2013]

* Globally use sequential peeling to transfer information in one
cluster to help an overlapping cluster

Theorem In the limit of large graphs that meet suitable degree
distribution constraints, the decoding algorithm will be successful
when below a specified external error probability threshold [Karbasi,
etal.,, 2013]

Introduce circuit noise
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(g) Step 7: cluster 1 succeeds.

(h) Step &: Algorithm finishes successfully.



Mathematical model for recall

* A neuron can assume an integer-valued state from the set
Q =1{0,:--,Q — 1}, interpreted as short term firing rate

* A neuron updates its state based on the states of its
neighbors {s;};.; as follows:
* First compute weighted sum h = );/*; w;s; + {, where
w; is weight of link from s; and ¢ is internal noise
* Then apply to h a nonlinear function f: R — Q

* Associative memory is represented by weighted bipartite
graph, G, with pattern neurons and constraint neurons

« Each pattern x = (x4, x5, **, x,,) is vector of length n, x; € Q

* Divide entries of each x into L overlapping subpatterns of
lengths nq, n,, -+, n;



Mathematical model for recall

« Let x( be the ith subpattern, and due to subspace
learning, the corresponding synaptic weights W® in the
bipartite graph satisfy W® - x(O = 0 for all patterns x in
the dataset X that has been memorized

External Errors

* Goalis to retrieve memorized pattern X from its corrupted
version x due to external errors, where external error is
additive vector of size n denoted by z, satisfyingx = X + z

Internal Noise

* Random numbers uniformly distributed in intervals [—v, V]
and [—v, v] additively affect local computations for pattern
and constraint neurons, respectively



Two iterative algorithms

Iele) Q2 G3)

* Locally based on iterative message-passing within
cluster (which hopefully have linear constraints)

* Globally use sequential peeling to transfer information
in one cluster to help an overlapping cluster



Algorithm 1 Intra-Module Error Correction

Input: Training set A, thresholds o, 1), iteration #,,.x

Output: ‘__ngj : ;I:éﬂ Cee :1_‘?53
I: fort =1 — t,. doO

Forward fremn’nm Calculate the input hEE} —
E W, {E Y 1 v for each neuron f,r-(ﬂ

set y‘ f(hf“ h).

]

and

¢
Backward iteration: Each neuron ,:E, )

{{} Z*m.f "\1":"11 I{E}} Iffj
9, (@
J Soh sign((w )
Update state of each pattem neuron j according
(€) (£)

o1 (£
tox;” =, HIUH(E}j }) only if ‘f}j j| > (.

compules

+ Uj.

5: end for

=

(Note biologically plausible)



Algorithm 2 Sequential Peeling Algorithm
Input: G,GD G2 G,

Output: z1.729.....7,

1: while there is an unsatisfied v'“) do

2: for{=1— Ldo

3: If v(©) is unsatisfied, apply Alg. 1
to cluster GV,

4: If v'¢) remained unsatisfied. revert
state of pattern neurons connected
to v to their initial state. Other-
wise, keep their current states.

5: end for

6: end while

7: Declare xy. 2o, . ...z, if all v©)’s are

satisfied. Otherwise, declare failure.

(Note state reversion is somewhat difficult to implement biologically)



Recall performance analysis

* Iflocal message-passing thresholds i) and ¢ are chosen
properly, then in the absence of external errors the
constraints remain satisfied and internal noise cannot
result in violations

* Key for making sequential peeling work

Lemma In the absence of external errors, the probability that
a constraint neuron in cluster £ makes a wrong decision due

to its internal noise is max(0, %) and for a pattern neuron,
Y= . U_¢
the probability is max(0,%2)

Proof From the thresholding operation in the algorithm



Recall performance analysis

* A neural network with internal noise outperforms one
without (while maintaining the same capacity)

* Letthe fraction of external errors corrected by a noiseless
recall algorithm after T iterations be A(T) and that of a
recall algorithm with internal noise be A, ,,(T).

* Furtherletthe T — oo values be A" and A, ,,

Theorem For appropriately chosen thresholds and the same

capacity C, for the same realizations of external errors,
Ay = A

Proof The noisy network can correct any external error
pattern that the noiseless counterpart can correct (stopping
set argument)



Stopping sets

LELES \\l: 5% R TERER ]S\FI'E}I*IL]!I! :!]ye]alypﬂﬁ +
N AN W P\ A £ R M
\\{'3\\ k) TR W

Pattern neurons Pattern neurons

Internal noise pushes the recall algorithm out of local minimums
where it may be stuck



Recall performance analysis: recovery speed

Theorem suggests only possible downside to using a noisy
network is its possible running time in eliminating external
errors: the noisy neural network may need more iterations to
achieve the same error correction performance.

Empirical experiments show that in certain scenarios, even
the running time improves when using a noisy network



Recall performance analysis: recovery speed Setting where all
. . . . algorithms succeed

—o— 1 =0

—— 1 — (.2
—_—t— 1 — (0.3
—— 1 = (.5

Average number of iterations

('

(a) Effect of internal noise at pattern neurons side.

40 : '
z —_—— ) — ()
'g —_——u = 0.2
E —_—t— = 0.3
f —m— v = 0.5
= 10+ B
a
. -
=
= o
&b
= .
) 4
= b re - r— . T
I I T T
0 0.1 0.2 0.3 0.4

r

(b) Effect of internal noise at constraint neurons side.



Recall performance analysis: recovery speed Setting where
10 - . . o algorithms may fail

"~
i
T =

Average number of iterations
]
S
/
I
\h
| L

I

(a) Effect of internal noise at constraint neurons side.

——r = 0

—_—— = .2
—— e = (1.3 B
—m—r = (.5

Average number of iterations

0 0.1 0.2 0.3 0.4

L)

(b) Effect of internal noise at pattern neurons side.



Recall performance analysis: error probability

 Theorem indicates our noisy neural networks outperform
noiseless ones, but does not specify the level of errors that
such networks can correct

 We have derived a theoretical upper bound on error

correction performance
1 | | | | | | |

Probability of correcting external errors




Finitary simulations
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Functional benefits of noise

Showed that internal noise actually improves the
performance of the recall phase while the pattern retrieval
capacity remains exponential in the number of neurons

Cf.

Stochastic resonance in the hippocampal CA3-CA1 model:
a possible memory recall mechanism
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INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE NOISE
SOURCE SOURCE

Are there fundamental limits of such computational systems?
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(a) Pattern neuron degrees (b) Constraint neuron degrees

Do models explain experimentally measurable properties
of neural systems?



Receptive field and connectome reconstruction

Can noise enhance data analysis for efficient receptive field or
connectome reconstruction, using multi-neuron excitation?

Poisson
spike .
k t
Pre-synaptic ] w ouls] process Spike coun
spikes ult] ] | | | 3]
Connectivity
weights
Input Qutput
variables Output observations
X variables y
P Z=Ax
[l O = Q
L
L] O
A ] O
E E : : Model for unknown
O] O ] D no.nllnearlty and
_ Componentwise Poisson process
Componentwise
. measurement Li . .
prior channel inear connectivity
p(x;) matrix with sparse
Py | z;) .
weights

* Message-passing algorithm for connectivity estimation

|Fletcher, Rangan, Varshney, Bhargava, 2011]
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