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1. Sample from state space,
using culturally well-
chosen sampling
distribution

2. Rank according to

psychophysical predictors
of novelty and flavor
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automatically or semi-
automatically depending
on human-computer
interaction model




Surprise 0.37 0.3
p 0.18 0.35 0.36
Pleasantness

Joint histogram of surprise and pleasantness for 10000 generated Caymanian Plantain Dessert
recipes. Values for the selected/tested recipe indicated with red dashed line.



Data Engineering and Natural Language Processing to Understand the Domain

Chocolate Chip Cookies

Yields: 12-14 senings
Description Edit

Ingredients < Edit

= 1 cup shortening
= 1 cup brown sugar

= 2tspvanilla

= 2 cup white flour

= % tsp baking powder
= Ytsp salt

= Y cup water

= 1% cup chocolate chips [ Added by Elle Bee

Directions Edit

1. Beat shortening for 30 seconds

2. Add brown sugar and continue to beat until ingredients are well blended

3. Add vanilla and mix well

4. Mix in the baking powder, salt and the flour; beat thoroughly.

5. Add the water, followed by the chocolate chips

6. Using a teaspoon, mould a teaspoonful of dough and place carefully on a cookie shest
7. Bake at 350°F for 10 minutes

8. Allow cookies to cool on a wire rack
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Generative, Selective, and Planning Algorithms to Create the Best New Ideas
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Recipe Corpus

ROOT

KEY INGREDIENT

af

ECETAR

FRIED LOTUS ROOT CHIPS
Yield: Makes a lot

2 lotus roots, peeled

Vegetable oil to fry

Kosher salt to taste

Pinch of cayenne pepper, optional

Thinly slice the lotus root using a mandolin. (If not frying right away, hold the
lotus root in water with some vinegar or lemon juice to prevent oxidation.) Heat
inches of oil in a heavy pot to 360° F. Pat the sliced lotus root dry with paper
towel, and fry in batches until golden brown (they will continue to brown once

removed, so cook just to golden). Transfer to a rack over a rimmed sheet pan,
and sprinkle with salt (mix in a bit of cayenne pepper to the salt, if a spicier chip
is desired).




Neurogastronomy
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Food Chemistry
OH

Saffron (Crocus sativus L.)

2-phenylethanol (=phenethyl alcohol)

safranal (=2,6,6-trimethyl-1,3-cyclohexadienecarbaldehyde)
3,5,5-trimethyl-2-cyclohexen-1-one (=isophorone)
hexadecanoic acid (=palmitic acid)
2,6,6-trimethyl-2-cyclohexene-1,4-dione
(Z,7))-9,12-octadecadienoic acid (=linoleic acid)
(Z,2,7)-9,12,15-octadecatrienoic acid (=linolenic acid)
naphthalene

2.4.6-trimethylbenzaldehyde (=mesitylaldehyde)
2,6,6-trimethyl-1,4-cyclohexadienecarbaldehyde
6.6-dimethyl-2-methylene-3-cyclohexenecarbaldehyde
4-hydroxy-2.6.6-trimethyl-1-cyclohexenecarbaldehyde (=4-hydroxysatrana
3.5.5-trimethyl-3-cyclohexen-1-one

3.3.4.5-tetramethylcyclohexanone
3.5.5-trimethyl-4-methylene-2-cyclohexen-1-one
4-hydroxy-3.5.5-trimethyl-2-cyclohexen-1-one
2.3-epoxy-4-(hydroxymethylene)-3.5.5-trimethylcyclohexanone
5.5-dimethyl-2-cyclohexene-1.4-dione

2.2 6-trimethylcyclohexane-1.4-dione (=3.5.5-trimethyl-cyclohexane-1.4-dione)
2-hydroxy-3.5.5-trimethyl-2-cyclohexene-1.4-dione O
2-hydroxy-4.4.6-trimethyl-2,5-cyclohexadien-1-one
2.6,6-trimethyl-3-0x0-1.4-cyclohexadienecarbaldehyde
4-hydroxy-2.6,6-trimethyl-3-oxo0-1,4-cyclohexadienecarbaldehyde
4-hydroxy-2,6,6-trimethyl-3-oxo-1-cyclohexenecarbaldehyde
3-hydroxy-2.6.6-trimethyl-4-oxo-2-cyclohexenecarbaldehyde
4-(2,2,6-trimethyl-1-cyclohexyl)-3-buten-2-one
4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one (=/3-ionone)
verbenone (=2-pinen-4-one)

octadecanoic acid (=stearic acid) .
(£)-9-octadecenoic acid (=oleic acid) |sophoro ne
2(5H)-furanone (=crotonolactone, 2-buten-4-olide, 4-hydroxy-2-butenoic acid lactone)

phenethyl alcohol

~0

safranal




Hedonic Psychophysics
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Bayesian Surprise and Attention

S(R,B) = D(PB|R||PB) = j Pg|r log

e

newly created recipe

personalized
repository of prior
food experience

/

posterior
beliefs

prior beliefs

[Itti and Baldi, 2006]
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* Chef Watson fairly specific in terms of what representations are
learned and what downstream purposes they can be used for

* Olfactory pleasantness model can be used for perfume, indoor air quality, etc.

* Surprise model can be used in a fairly general-purpose way across
modalities and domains

e Can learned representations be “general purpose technologies” for
numerous tasks, like the steam engine or electricity?
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The Natural Language Decathlon:
Multitask Learning as Question Answering

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, Richard Socher
Salesforce Research

Task Dataset # Train # Dev  # Test Metric
Question Answering SQuAD 7599 10570 9616 nF1
Machine Translation IWSLT 196884 993 1305 BLEU
Summarization CNN/DM 287227 13368 11490 ROUGE
Natural Language Inference MNLI 392702 20000 20000 EM
Sentiment Analysis SST 6920 872 1821 EM
Semantic Role Labeling QA-SRL 6414 2183 2201 nF1
Zero-Shot Relation Extraction QA-ZRE 840000 600 12000 cF1
Goal-Oriented Dialogue WOZ 2536 830 1646 dsEM
Semantic Parsing WikiSQL 56355 8421 15878 IfEM

Pronoun Resolution MWSC 80 82 100 EM




Language Models are Few-Shot Learners

Tom B. Brown" Benjamin Mann® Nick Ryder” Melanie Subhbiah®
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Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
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Article
Information-Theoretic Generalization Bounds for
Meta-Learning and Applications

Sharu Theresa Jose *" and Osvaldo Simeone

Are there “invariant task representations”?



Meta-learning problem

* As formalized by the “no free lunch theorem”, any effective learning
procedure must be based on prior assumptions on the task of interest

* These include the selection of a model class and of the hyperparameters of
a learning algorithm, such as weight initialization and learning rate

* In conventional single-task learning, these assumptions, collectively known
as |gduct|ve bias, are fixed a priori relying on domain knowledge or
validation

* Fixing a suitable inductive bias can significantly reduce the sample
complexity of the learning process, and is thus crucial to any learning
procedure

* The goal of meta-learning is to automatically infer the inductive bias,
thereby learning to learn from past experiences via the observation of a
number of related tasks, so as to speed up learning a new and unseen task



In this work, we consider the meta-learning problem of inferring the hyperparameters of a learning
algorithm. The learning algorithm (henceforth, called base-learning algorithm or base-learner) is defined
as a stochastic mapping Py, zn , from the input training set Z" = (Zy,..., Zy) of m samples to a model
parameter W £ W for a fixed hvoerparameter vector u. The meta-learnine aleorithm (or meta-learner)
infers the hyperparameter vector u, which defines the inductive bias, by observing a finite number of
related tasks.



For example, consider the well-studied algorithm of biased regularization for supervised learning [9,10].
Let us denote each data point Z = (X, Y) as a tuple of input features X € B? and label Y € R. The loss
function] : W x Z — R is given as the quadratic measure [(w,z) = ({w, x) — y)* that quantifies the loss
accrued by the inferred model parameter w on a data sample z. Corresponding to each per-task data set
Z™, the biased regularization algorithm Py 7 , is a Kronecker delta function centered at the minimizer of
the following optimization problem

] T ‘:{ 2

EZH“%)"‘EHW—“H , (1)
=1

which corresponds to an empirical risk minimization problem with a biased regularizer. Here, A > 0isa
regularization constant that weighs the deviation of the model parameter w from a bias vector u. The bias
vector u can be then thought of as a common “mean” among related tasks. In the context of meta-learning,
the objective then is to infer the bias vector u by observing data sets from a number of similar related tasks.

Different meta-learning algorithms have been developed for this problem [11,12].



[n the meta-learning problem under study, we follow the standard setting of Baxter [13] and assume
that the learning tasks belong to a task environment, which is defined by a probability distribution Pr on

the space of learning tasks T, and per-task data distributions { PElT—T}TET‘ The data set 2™ for a task T is
then generated i.i.d. according to the distribution Pzr_.. The meta-learner observes the performance of

the base-learner on the meta-training data from a finite number of meta-training tasks, which are sampled
independently from the task environment, and infers the hyperparameter U such that it can learn a new

task, drawn from the same task environment, from fewer data samples.



The quality of the inferred hyperparameter U is measured Enj,r the meta-generalization loss, ES{U],
which is the average loss incurred on the data set Z" ~ Pzm 7 of a new, previously unseen task T sampled
from the task distribution Pr. The notation will be formally introduced in Section 2.2. While the goal of
meta-learning is to infer a hyperparameter U that minimizes the meta-generalization loss Ly (U}, this is
not computable, since the underlying task and data distributions are unknown. Instead, the meta-learner
can evaluate an empirical estimate of the loss, £ (U|Z{",;), using the meta-training set Z{",; of data from N
tasks, which is referred to as meta-training loss. The difference between the meta-generalization loss and
the meta-training loss is the meta-generalization gap,

AL(U|Zily) = Lg(U) — Li(U|ZTiy), (2)

and measures how well the inferred hyperparameter U generalizes to a new, previously unseen task. In
particular, if the meta-generalization gap is small, on average or with high probability, then the performance

of the meta-learner on the meta-training set can be taken as a reliable estimate of the meta-generalizaﬁnn
loss.



In this paper, we study information-theoretic upper bounds on the average meta-generalization gap
Epzm Pujz I[ﬂE(U|Z’” )], where the average is with respect to the meta-training set Z{",, and the

meta leamer defined by the stochastic kernel Py zn - Specifically, we extend the recent line of work
initiated by Russo and Zhou [14], and Xu and Ragmskj,r [15] which obtain mutual information (MI)-based
bounds on the average generalization gap for conventional learning, to meta-learning. To the best of our
knowledge, this is the first work that studies information-theoretic bounds for meta-learning.



Consider first the conventional problem of learning a task T € 7. As illustrated in Figure 1
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meta-testing

meta-test

task

meta-training
set

Figure 2. Directed graph representing the variables involved in the definition of meta-generalization gap
(18) for separate within-task training and testing sets.
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Figure 3. Directed graph representing the variables involved in the definition of meta-generalization gap
(22) for joint within-task training and testing sets.



e In Theorem 1, we show that, for the case with separate within-task training and test sets, the average
meta-generalization gap contains only the contribution of environment-level uncertainty. This is captured
by a ratio of the mutual information (MI) between the output of the meta-learner U and the meta-training

set Z",;, and the number of tasks N as

E L3P (U|ZM,, E‘TEI u; zm,, 3
Pzrl.l:rNPUE.llul[ | ETH { ]

where o2 is the sub-Gaussianity variance factor of the meta-loss function. This is a direct parallel of the
Ml-based bounds for single-task learning [25].



e In Theorem 3, we then shown that, for the case with joint within-task training and test sets, the bound on
the average meta-generalization gap also contains a contribution due to the within-task uncertainty via
the ratio of the MI between the output of the base-learner and within task training data and the per-task
data sample size m. Specifically, we have the following bound

'[E:PEFH

U £HJ

01n m 2{?2 252
AP (U N)l‘ I(U; Z}y) +Ep, [\/ —L1(W;Z"|T = 1), @

where 67 is the sub-Gaussianity variance factor of the loss function I(w, z) for task T.



How should one approach learning
representations for several (and unknown) tasks
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