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Tricks for formulating/solving problems
(principles of theoretical research)

| 72 7R
Creative Thinking
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1.Simplification: get rid of enough detail (including
practical aspects) for intuitive understanding

2.Similarity to a known problem (experience helps)
L 3. Reformulate (avoid getting in a rut)

4.Generalize (more than opposite of simplify)
5.Structural analysis (break problem into pieces)
- 6.Inversion (work back from desired result)




Shannon a la Gallager

* Shannon was almost opposite of applied mathematicians
e Applied mathematicians solve mathematical models formulated
by others (perhaps with minor changes to suit their tools)

* Shannon was a creator of models — his genius lay in
determining the core of the problem and removing details
that could be reinserted later

* Shannon was interested in several problems at all times

* Shannon studied what was happening in multiple fields,
but didn’t work on what many others were working on

* Shannon asked conceptual questions about everyday
things
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Claude Shannon’s schematic diagram of a general communication system (1948: Figure 1)
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The fundamental problem of communication is that of
reproducing at one point either exactly or approximately
a message selected at another point.
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Big idea #1:
Communication is a statistical problem
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Various incarnations of
Shannon’s schematic for a
general communication
system in textbooks.

(a) Fano (1961: Figure
1.1). (b) Ash (1965: Figure
1.1.1). (c) Berger (1971:
Figure 1.2.1). (d) two
figures from Csiszar and
Korner (1997: Figures 2.1
and 2.2). (e) MacKay
(2003: Figure 1.6). (f) two
figures from Cover and
Thomas (1991: Figures
8.1and 8.12). (g)
Woodward (1953: 58). (h)
Hancock (1972: Figure
1.1). (i) Richardson and
Urbanke (2008: Figure
1.2). (j) Gatlin (1972:
Figure 17). (k) Rényi
(1984: 43).
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before we had the theory,... we had been
dealing with a commodity that we could
never see or really define. We were in the
situation petroleum engineers would be in if
they didn’t have a measuring unit like the
gallon. We had intuitive feelings about these
matters, but we didn’t have a clear

understanding
— Jerome Wiesner (1953)



Certain Factors Affecting Telegraph Speed'

By H. NYQUIST

THEORETICAL PossIBILITIES USING CODES WITH DIFFERENT
NUMBERS OF CURRENT VALUES

The speed at which intelligence can be transmitted over a telegraph
circuit with a given line speed, i.e., a given rate of sending of signal
elements, may be determined approximately by the following formula,

the derivation of which is given in Appendix B.

W=K log m

Where W is the speed of transmission of intelligence,
m is the number of current values,
and, K is a constant.

[H. Nyquist, “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, 1924.]



* If the following messages are equally likely, how many
bits are being produced?

{01101, 11101}

{1, 0}

{w, X}

(33333333333, 4444444}
{01, 10, 11, 00}

{000, 111, 110, 101}

o voE W R



Not just possibilities but probabilities (from
Nyquist to Shannon)

1

[https://en.wikipedia.org/wiki/Binary_entropy function#/media/File:Binary_entropy_plot.svg]



Big idea #2:
There is a notion of information rate, which can be measured in bits



Axiomatic derivation of mutual information

Let X and Y be discrete random variables with respective alphabets X and ). It may help to
think of X and Y as representing the input and output of some digital communication system. We
are interested in quantifying the amount of information that observation of the occurrence of the
event [Y = y| provides about whether or not the event [X = z] also has occurred. We denote this
quantity by I(x,y). We assume knowledge of the joint distribution p(z,y) = Pr[X = z,Y = 9]
for all (z,y) € & x V. This, of course, provides us with knowledge of the associated marginal
distributions {p(z),z € X'} and {¢(y),y € Y} and conditional distributions {p(z|y)} and {q(y|z)}.

We now introduce four postulates, or requirements, that most people consider it reasonable that
I(z,y) should obey. After each postulate is introduced, we name it and try to describe the moti-
vation underlying it.



Postulate A. There exists a function F(e, 8) such that I(z,y) = F(c, 8)|a=p(z),8=p(zly)

The idea behind this postulate is that [Y = y] can convey information about [X = z] only by
virtue of the fact that it changes the probability of occurrence of [X = z] from its apriori value
p(z) to its aposteriori value p(z|y). We call Postulate A the Bayesian Postulate because it imbeds
information into the Bayesian framework for reasoning probabilistically from observations back to
their possible causes.

Postulate B. The partial derivatives of F(a, ) exist.

That is, Fi(a, 8) = £ F(c, ) and Fx(a,f) = E%F(a B) exist for 0 < o, B < 1. We call Postulate A
the Smoothness Postulate. Since differentiability implies continuity, the Smoothness Postulate
implies among other things. Jtha,t an. mﬁmtesma.l perturba.tlon in the prior or posterior probability
of occurrence of [X = z] cannot result in a discontinuous jump in our information measure.



Postulate C. F(a,7) = F(a,8)+ F(8,7) , 05, 8,7 < 1.

The reasoning underlying Postulate C is that, if y were a vector with two components, say y =
(w, z), then the information provided by observing its occurrence would have to be the sum of that
provided by observing w and that provided by then observing 2. In the first of these two steps the
information that [W = w] provides about whether or not [X = z] is F(p(z),p(z|w)). Once this
information has been provided, the original prior probability p(z) of the event [X = z] is replaced by
p(z|w). After [Z = 2] subsequently is observed, the posterior probability of occurrence of [X = z]
then becomes p(z|w, z), so the additional information provided must be F(p(z|w), p(z|w, z)). We
conclude that F(p(z), p(z|w, 2)) = F(p(z),p(z|w)) + F(p(z|w), p(z|w, 2)). Since p(z),p(z|w) and
p(z|w, z) can range over any numbers in the unit cube in various examples, we are led to Postulate
C, which we call the Successive Revelation Postulate.



Postulate D. F(ay, 86) = F(a,8) + F(7,6) , 0< o, 8,7,0 < 1.

The motivation behind Postulate D is that, if we have two independent experiments, one with input
X and output Y and the other with input U and output V, then the information that observation
of the combined output event [Y = y,V = v] provides about whether or not the combined input
event [z = z,U = u] occurred should be the sum of that which [Y" = y] provides about whether or
not [X = z] and that which [V = v] provides about whether or not [U = u]. Whenever the (X,Y)
and (U, V) experiments are independent, though, the joint prior probability is p(z,u) = p(z)p(u)
and the joint posterior probability is p(z, uly, v) = p(z|y)p(u|v). Hence, we require that

F(p(z)p(u), p(z|y)p(ulv)) = F(p(z),p(z|y)) + F(p(u), p(ul|v))-

Since p((z), p(zly), p(u) and p(u|v) can assume any values in [0, 1]* in various examples, we are led
to Postulate D, which we call the Independence Additivity Postulate.



Postulate A. There exists a function F(«, 8) such that I(z,y) = F(e, ﬂ)la=p(z),ﬂ=p(x|y)

Postulate B. The partial derivatives of F'(a, 8) exist.
Postulate C. F(a,7) = F(a,8) + F(8,7) , 0< o, 8,7 < L.
Postulate D. F(ay,Bd) = F(o,8) + F(7,4) , 0< 0,8,7,6 < 1.

Because of B we may take the partial derivative of both sides of C with respect to 8. However, 8
does not appear on the left hand side of C, so we get

0 = Fy(a, B) + F1(B,7),

or-equivalently, Fo(a; 8) = —F1(B,7). It follows that F3(a,8) cannot vary with a because o does
‘not appear in Fi(8,7). That is, F>(a, 8) is actually a function only of 8 which we shall denote by

‘G'(B). We have o
NSO Fa(e, ) = —F1(8,7) = G'(B).



Next observe that if we take the indefinite integral of F»(a, 8) with respect to 8, we have to get
back F'(a, ) plus a constant of integration, C = C(a), where we have been careful to allow for the
fact that the constant may depend on the other argument « in F(a, 8). That is,

| Fa(a,B)dp = F(a, ) + C(a).

[Check this by taking the partial with respect to 8 and verifying that you get the identity Fa(a, 8) =
F(a, 3).] Hence, we may write

[ 6'(B)a8 = G(B) = F(a,p) + Cla),
so F(a,B) = G(B) — C(a). Putting this into C, we get

G(v) — Cla) = G(B) — C(a) + G(v) — C(B),
which tells us that G(8) = C(8). Accordingly,

F(a,B) = G(B) — G(a).



Our problem of discovering the functional form of F(a, ), a function of two variables, thus has
been reduced to that of finding the function G(-) of a single variable.

Now we use Postulate D re-expressed in terms of G(:), namely
G(B6) — G(ary) = G(B) — G(a) + G(8) — G(7).
Taking the derivative of this with respect to § gives
BG'(Bd) = G'(9).
In the limit as § — 1 this becomes |
BG'(B) =G'(1) = K,
where K is a constant. This tells us that
G'(B) = K/8B,

from which we deduce that
G(B8) = KIn(8) + C,

where C is another constant. It follows that

F(a,B) = KIn(B) + C — Kln(a) - C,



or

F(a,f) = Kin(2).

‘Referring to Postulate A, we conclude that

I(z,y) = KIn(22Y),
p(z)
The constant K determines the unit of information. If we set X = 1, then I is measured in "nats.”
It is more common to set K = logs(e) = 1.443, in which case we say I is measured in ”bits” and
write

I(z,y) = logz(p(?lz))bits.
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Why is information theory not just applied probability?
What is different from detection and estimation?
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Generally up to the design of the engineer



e What is the best that one can do?

* How much can coding help?



Big idea #3:
Coding



Kinds of lossless source codes

* Fixed-to-variable (e.g. Huffman code)

* Typically want a way to separate codewords without punctuation (unique
decodability, e.g. prefix-free)

* Variable-to-fixed (e.g. Tunstall code)

* Variable-to-variable (e.g. concatenation of Tunstall and Huffman)
* Optimal codes are an open question, whole area largely unstudied

* Fixed-to-(almost)fixed, also called block codes

Consider zero error and arbitrarily small error



Kraft inequality and Shannon-Elias Codes



Block Codes and AEP



Universal source codes

e So far, we assumed that we knew the source distribution in order to
design good/optimal codes

* What if we don’t? Learn the probabilities while doing the coding

* Universal source codes, such as Lempel-Ziv (LZ78)



The Beauty of Lempel-Ziv Compression

* https://www.youtube.com/watch?v=RV5aUr8sZD0
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