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Modeling Information

Optimization

Role of machine learning GHG emissions impact

Policy design, monitoring, and enforcement

e (e.g. GHG tracking, infrastructure maps)
e R&D for low-carbon technologies
(e.g. photovoltaics, batteries)
Fast approximate simulation Planning and design of relevant systems
(e.g. urban infrastructure, carbon markets)
Forecasting
System operation and efficiency
(e.g. heating & cooling, electricity grid)
System optimization and control
Predictive maintenance

[Kaack et al, 2021]
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I Electricity systems
Enabling low-carbon electricity . . . » .
Reducing current-system impacts . . .
Ensuring global impact - .
2 Transportation
Reducing transport activity . . . .
Improving vehicle efficiency . -
Alternative fuels & electnfication . .
Modal shaft . . . .
3 Buildings and cities
Optimizing buildings . . » .
Urban planning . . . .
The future of cities . . .
4 Industry
Optimizing supply chains . . =
Improving materials .
Production & energy . . .
5 Farms & forests
Remote sensing of emissions -
Precision agriculture . . =
Monitoring peatlands .
Managing forests . . =
& Carbon dioxide removal
Direct air capture
Sequestering CO. . .
7 Chimate prediction
Uniting data, ML & climate science . . .
L ] L ] L ]

Forecasting extreme events

[Rolnick et al, 2019]
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Forming New Combinations: Concrete that has half as much embodied carbon and is much stronger

* 5% of worldwide CO, emissions caused by cement production Conditional Variational Autoencoder (CVAE)
* Reduce environmental impacts of construction materials while
complying with product specifications Strength —»

Age ——
 UCI ML repository concrete strength dataset + environmental impact Enironmental __,
evaluated using the Cement Sustainability Initiative’s Environmental
Product Declaration tool:
* 1030 instances -
* 8 inputvariables (composition) formula
* 1 (compressive strength)
* 12 (environmental impact) output variables

Reconstructed
— concrete
formula

* Train a conditional generative neural network model to be able to Strength [0,1]
create novel formulations of concrete . (0,1}
Environmental Impact [0,1]%2

Concrete formula [0,1]7




Forming New Combinations: Concrete that has half as much embodied carbon and is much stronger

DeKalb data center currently under construction
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Isomap embedding of concrete formulations




Social, Economic and Political Settings (S)
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Where to plant trees?

Action situations

. Outcome

Improvement in tree cover,
Socio-economic and
ecological benefits
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Governance System

Forest department,
forest rules, acts,
forest management,
land tenure,
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setrules for

define and
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(Multi-stakeholders)

Senior forest officers,
donors, villagers, local
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companies, politicians,
state and national
governments, NGOs
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Related Ecosystems (ECO) (rainfall, temperature, humidity etc.)

[Rana and Varshney, 2021]




Planting trees at the right places: Recommending suitable
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Fig. 2. ePSA (mobile anpp) showing site suitability classes
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The Day After Tomorrow

https://www.youtube.com/watch?v=Ku_IseK3xTc



Atlas of a Changing World

https://www.youtube.com/watch?v=YUIXp7uoZVc
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ACCELERATE SCIENTIFIC DISCOVERY AND TECHNOLOGY INNOVATION

Vignette 16

Aishwarya is a climate scientist trying to make predictions of future climate at the local and regional
scale. It is essential that such predictions correctly quantify uncertainty. She chooses a climate
model that is based on mathematical models of atmospheric physics, solar radiation, and land
surface-atmosphere interactions. Unfortunately, running the model at the required fine level of detail is
not possible due to the computational cost and the lack of sufficient observation data. Fortunately, recent
advances in ML research have produced new physics-aware ML approaches that learn from data while incorporating
knowledge about the underlying physics. These approaches run efficiently and produce models at a much finer level
of detail than the original climate models. This makes it easy to run multiple models efficiently, which in tumn allows
Aishwarya to provide clear uncertainty bounds for the resulting predictions.




The results of these models are then used by Jia, who works at FEMA. Using machine learning methods, she combines
climate predictions under different policy scenarios (no change versus reduced carbon emissions, etc.) to identify regions
that are most vulnerable to extreme weather events such as hurricanes. floods. droughts, heat waves, and forest fires.
With the aid of these causal models, she can plan appropriate responses. For example, her physics-aware ML model
produces inundation maps in response to extreme meteorological events (hurricane, heavy rain) to identify areas of
flooding, which is fed into an Al system for smart cities to perform evacuation planning, emergency relief operations, and
planning for long-term interventions (e.g.. building a sea wall to ward off storm surge).



Thanks to the 20 years of research investment in Al, physics-aware machine learning techniques are available that can
process multimodal, multi-scale data and also handle heterogeneity in space and time, as well as quantify uncertainty
in the results. The combination of physics-based climate and hydrological models with machine learned components
allows Jia to produce more accurate predictions than would be possible with pure physics-based or pure machine
learned models alone. This hybrid approach also generalizes better to novel scenarios, identifying new threats that
could result in injury or death. In 2035, these models are applied to revise flood maps, saving many lives in the floods
caused by hurricane Thor in North Carolina.



An Al-based Framework for Accelerated Discovery of Climate Impacts

Q: What is the impact of climate change on <insert sector>?

1: Understand the driving processes

2. Identify the impacts of a changing climate

3: Design effective solutions to mitigate impacts
4: Enable key stakeholders

The Grainger College

IBM-ILLINOIS DISCOVERY ACCELERATOR INSTITUTE §::=?=_E_ I of Engineering




An Al-based Framework for Accelerated Discovery of Climate Impacts

Al-Powered Climate Impact Assessments

A state-of-the-art process-based

land and food production model Novel physics-informed Al

~—_ Process-based Physics-informed methods to accelerate discovery
climate impact I . . .
e climate impacts of climate impacts on food
productivity and GHG emissions

Nature Food 2021:
“C0O2, CH4 and N20 emissions from the production and
consumption of all plant- and animal-based foods”

Combine objectives of data fidelity and
Deep weather satisfaction of physical constraints, with
generation symmetries enforced via group-equivariance
and parameter sharing

Generative Al techniques for _—
rapid climatic scenarios creation

ICML 2021:
“Mapping complex weather data to a known
distribution implements an efficient control for

High-resolution climate simulations (4 km)

weather field synthesis towards more (or less) | .

extreme scenarios” State-of-the-art dynamlcally
downscaled hlgh-FESO|UtI0n climate Unprecedented climate projections developed by
simulations for North America a consortium of researchers at UIUC and Argonne

The Grainger College
of Engineering

IBM-ILLINOIS DISCOVERY ACCELERATOR INSTITUTE




https://s3.us-east-1.amazonaws.com/climate-change-ai/papers/icml2021/39/slides.pdf
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Physics-informed machine
learning: case studies for
weather and climate
modelling

K. Kashinath!, M. Mustafa, A. Albert"2, J-L. Wu'3,
C. Jiang1’4, S. EsmaeilzadehS, K. Azizzadenesheli(’,
R. Wang"’, A. Chattopadhyay'8, A. Singh'2,
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A. Anandkumar®®, P. Hassanzadeh® and Prabhat’

2. Physics-informed machine learning: objectives, approaches, applications

(a) Objectives of physics-informed machine learning

By incorporating physical principles, governing laws and domain knowledge into ML models,
the rapidly growing field of PIML seeks to:

— Build physically consistent and scientifically sound predictive models.

— Increase data efficiency, i.e. train models with fewer data points.

— Accelerate the training process, i.e. help models converge faster to optimal solutions.

— Improve the generalizability of models to make reliable predictions for unseen scenarios,
including applicability to non-stationary systems, e.g. a changing climate.

— Enhance transparency and interpretability to make models more trustworthy:.



Section and

case study
refarence

&3ai: Wu et al. [18]

PIML application/
modelling task
from §2c

emulation

Rayleigh-Bénard
convection

direct numerical simulation

Custom loss, stochasticity,
multi-scale, spectral

PIML objectives
achieved from &2a

physically consistent,
accelerated training

mountain snowpack
melting (hydro-climate)

hydro- meteorological
observational product

observational lake
haracteristics data

physically consistent, data
efficient, interpretable

and clouds

super-parametrized
community
atmosphere model

custom loss, custom
architecture

physically consistent,
generalizable

downscaling/
super-resolution

weather research and
forecasting model

physically consistent,
qeneralizable

downscaling/
super-resolution

custom architecture,
stochasticity, UQ

physically consistent, data
efficient

downsaling/
super-resolution

Rayleigh-Bénard
convedction

custom loss, custom
architecture, multi-scale,
spatio-temporal coherence

physically consistent,
generalizable, scalable

Rayleigh-Bénard
convection

custom loss, custom
architecture, multi-scale,
physics-based structure

physically consistent,
generalizable,
interpretable

Rayleigh-Bénard
convection, Ocean currents

DNS, ocean reanalysis
product (ORASS)

custom architecture,

equivariant, spatio-temporal

coherence

physically consistent, data
efficient, generalizable

Custom loss, custom
architecture, equivariant,
spatio-temporal coherence

spatial transformer
network

physically consistent, data
efficient, stable
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Figure 2. A comparison between the training data (truth), a standard GAN trained up to 20 epochs and 100 epochs, and the
constrained GAN trained up to 20 epochs. Left: (a—d) time-averaged turbulent kinetic energy fields over a square spatial domain
of size 256 > 256. Right: turbulent kinetic energy spectra. The —>5/3 line is predicted by theory. The constrained GAN captures
the spectrum at all except the highest wavenumbers, i.e. the finest scales of the flow. Figure reproduced from [18]. (Online
version in colour.)



(a) (b) power spectral density of SR models versus real
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Figure 6. (a) Schematic of GAN for SR. Figure reproduced from [97]; (b) Power spectral density (PSD) plot of SR methods
compared. Figure reproduced from [103]. (Online version in colour.)



PSD-Net ESRGAN SR-CNN bicubic

Figure 7. Comparison of low-resolution (LR), high-resolution ground truth (HR), and generated SR outputs from PSD-Net,
ESRGAN, SRCNN and bicubic upsampling. The lower panel corresponds to the area of the red box in the upper panel. Figure
reproduced from [103]. (Online version in colour.)
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Figure 13. Comparison between performance of equivariant (Equ) and non-equivariant ResNet models for RBC velocity fields.
From left to right are equivariant models under uniform motion, magnitude, rotation, and scale equivariance transformations.
Tests are on future times, t =1, 5 and 10. Bottom: Comparison between performance of equivariant (£qu) and non-equivariant
ResNet models for ocean currents. Equ columns are equivariant models under uniform motion, magnitude, rotation, and scale
equivariance transformations. No single equivariant model captures the target accurately; however, all equivariant models
perform better than the non-equivariant baseline. Figure reproduced from [30]. (Online version in colour.)



