Generative Al Models ECE 598 LV – Lecture 18

Lav R. Varshney

29 March 2022

Information Lattice Learning: Learning laws of neurogenesis

[[]B. Clark, et al., "Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification," Neuron, June 2019.]

• Single-cell RNA sequence data analysis for understanding the rules that govern pattern formation in neurodevelopment

[Yu, Varshney, Stein-O'Brien, 2019]

Information lattice learning: decompose and recompose

Figure 1: ILL's main idea: decompose the signal into rules that are individually simple but collectively expressive. A lattice is first constructed regardless of the signal (prior-driven), yet the same lattice may be later used to learn rules (data-driven) of signals from different topics, e.g. music and chemistry.

Information lattice learning for knowledge discovery

Information lattice learning for knowledge discovery

 $\{{\rm red},\,{\rm blue}\}$

 $\{\text{convex, concave}\}$

 $\{$ trigon, tetragon, pentagon $\}$

Abstraction universe as partition lattice

- A set *X* can have multiple partitions (Bell number $B_{|X|}$)
- Let \mathfrak{B}_X^* denote the family of all partitions of a set *X*, so $|\mathfrak{B}_X^*| = B_{|X|}$
- Compare partitions of a set by a partial order on \mathfrak{B}_X^*
 - Partial order yields a *partition lattice*, a hierarchical representation of a family of partitions

Information theoretic algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

The iterative cooperation between a discriminator (teacher) and a generator (student).

Magic cuts and magic glue involve moving up and down ILL

Generative Algorithms based on Rules

Fractals

https://upload.wikimedia.org/wikipedia/commons/a/a4/Mandelbrot_sequence_new.gif

https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials

[Varshney et al., 2011]

Definition 1 (Kronecker product of matrices) Given two matrices $\mathbf{A} = [a_{i,j}]$ and \mathbf{B} of sizes $n \times m$ and $n' \times m'$ respectively, the Kronecker product matrix \mathbf{C} of dimensions $(n \cdot n') \times (m \cdot m')$ is given by

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix}$$

.

We then define the Kronecker product of two graphs simply as the Kronecker product of their corresponding adjacency matrices.

(d) Adjacency matrix of *K*₁

(e) Adjacency matrix of $K_2 = K_1 \otimes K_1$

	••••	
•••••		
•• •• ••	•••••	
••••		
•••••	••••	
••••	••••	• • • •
•••••		•••••
•••••	•••••	•••••
•••••	•••••	•••••
••••	•••••	•••••
	• • • •	• • • •
	•••••	•••••
	•••••	•••••
	•••••	•••••
	•••••	•• ••

(a) K_3 adjacency matrix (27 × 27)

(b) K_4 adjacency matrix (81 × 81)

ni'n æ in in in "..."...".. ni'n 'ni'ni'n ΞĦ. ê.

Initiator K_1

 K_1 adjacency matrix

 K_3 adjacency matrix

Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distributions, for both in- and out-degrees.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph K_k has a multinomial distribution for its eigenvalues.

Theorem 7 (Multinomial eigenvector distribution) The components of each eigenvector of the Kronecker graph K_k follow a multinomial distribution.

Theorem 12 If K_1 has diameter D and a self-loop on every node, then for every k, the graph K_k also has diameter D.

Definition 14 (Stochastic Kronecker graph) Let \mathcal{P}_1 be a $N_1 \times N_1$ probability matrix: the value $\theta_{ij} \in \mathcal{P}_1$ denotes the probability that edge (i, j) is present, $\theta_{ij} \in [0, 1]$.

Then k^{th} Kronecker power $\mathcal{P}_1^{[k]} = \mathcal{P}_k$, where each entry $p_{uv} \in \mathcal{P}_k$ encodes the probability of an edge (u, v).

To obtain a graph, an instance (or realization), $K = R(\mathcal{P}_k)$ we include edge (u,v) in K with probability p_{uv} , $p_{uv} \in \mathcal{P}_k$.

Cellular Automata

https://playgameoflife.com/

https://www.wolframscience.com/nks/p170--cellular-automata/

https://towardsdatascience.com/neural-cellular-automata-for-art-recreation-6d9fb61afb37

https://towardsdatascience.com/neural-cellular-automata-for-art-recreation-6d9fb61afb37

Information Lattice Learning: Learning laws of neurogenesis

[[]B. Clark, et al., "Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification," Neuron, June 2019.]

• Single-cell RNA sequence data analysis for understanding the rules that govern pattern formation in neurodevelopment

[Yu, Varshney, Stein-O'Brien, 2019]

Neural Cellular Automata

https://distill.pub/2020/growing-ca/