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Information Lattice Learning: Learning laws of neurogenesis
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[B. Clark, et al., “Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification,” Neuron, June 2019.]

» Single-cell RNA sequence data analysis for understanding the rules
that govern pattern formation in neurodevelopment

[Yu, Varshney, Stein-O’Brien, 2019]



Information lattice learning: decompose and recompose
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Figure 1: ILL's main idea: decompose the signal into rules that are individually simple but collectively
expressive. A lattice is first constructed regardless of the signal (prior-driven), yet the same lattice may
be later used to learn rules (data-driven) of signals from different topics, e.g. music and chemistry.



Information lattice learning for knowledge discovery




Information lattice learning for knowledge discovery

{red, blue} {convex, concave} {trigon, tetragon, pentagon}



Information lattice
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Abstraction universe as partition lattice

* Aset X can have multiple partitions (Bell number Bx)
* Let By denote the family of all partitions of a set X, so |By| = By

« Compare partitions of a set by a partial order on Bj
» Partial order yields a partition lattice, a hierarchical representation of a family of partitions

Pictorially, a directed acyclic graph (vertex: partition; edge:
coarser than)

(more specific) 4
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Information theoretic algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

The iterative cooperation between a discriminator
(teacher) and a generator (student).

The teacher solves: music The student solves:
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Magic cuts and magic glue involve moving up and down ILL
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Generative Algorithms based on Rules



Fractals

https://upload.wikimedia.org/wikipedia/commons/a/a4/Mandelbrot_sequence_new.gif

https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials



[Varshney et al., 2011]



Definition 1 (Kronecker product of matrices) Given nvo matrices A = [a; ;] and B of sizes n x m
and n’ x m' respectively, the Kronecker product matrix C of dimensions (n-n') x (m-m'") is given by
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We then define the Kronecker product of two graphs simply as the Kronecker product of their
corresponding adjacency matrices.
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(a) K3 adjacency matrix (27 x 27) (b) K4 adjacency matrix (81 x 81)
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Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distri-
butions, for both in- and out-degrees.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph Ki has a multinomial
distribution for its eigenvalues.

Theorem 7 (Multinomial eigenvector distribution) 7he components of each eigenvector of the
Kronecker graph Ky follow a multinomial distribution.

Theorem 12 If K; has diameter D and a self-loop on every node, then for every k, the graph Ky
also has diameter D.



Definition 14 (Stochastic Kronecker graph) Ler P; be a Ny x Ny probability matrix: the value
0;; € P denotes the probability that edge (i, j) is present, 0;; € [0,1].

Then k'™ Kronecker power Tl[k] = P, where each entry py, € Fy encodes the probabiliry of an
edge (u,v).

To obtain a graph, an instance (or realization), K = R(‘Fx) we include edge (u,v) in K with
probability p,y. Puv € .



Cellular Automata

https://playgameoflife.com/

https://www.wolframscience.com/nks/p170--cellular-automata/



Create a next-itate rule set, or select a preset.
Rule 30 || Rule 90 || Rule 110 || Rule 184 || Random
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https://towardsdatascience.com/neural-cellular-automata-for-art-recreation-6d9fb61afb37



https://towardsdatascience.com/neural-cellular-automata-for-art-recreation-6d9fb61afb37



Information Lattice Learning: Learning laws of neurogenesis
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[B. Clark, et al., “Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification,” Neuron, June 2019.]

» Single-cell RNA sequence data analysis for understanding the rules
that govern pattern formation in neurodevelopment

[Yu, Varshney, Stein-O’Brien, 2019]



Neural Cellular Automata

https://distill.pub/2020/growing-ca/



