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Transformers as Universal over Domains
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[https://magenta.tensorflow.org/music-transformer, https://www.kaggle.com/piantic/vision-transformer-vit-visualize-attention-map,
https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/]



Transformers as Universal Predictors?

1258 [EEE TRAMSACTIONS ON INFORMATION THEORY WOL., 38, MO, 4, JULY 1992

Universal Prediction of Individual Sequences

Meir Feder, Member, IEEE, Neri Merhav, Member, IEEE, and
Michael Guiman, Member, [EEE

1506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004

Finite-Memory Universal Prediction of
Individual Sequences

Eado Meron and Meir Feder, Fellow, IEEE




Transformers as Universal Approximators

2 Transformer networks

A Transformer block is a sequence-to-sequence function mapping R?*" to R4*™_ It consists of
two layers: a self-attention layer and a token-wise feed-forward layer, with both layers having a
skip connection. More concretely, for an input X € R?*" consisting of d-dimensional embeddings
of n tokens, a Transformer block with multiplicative or dot-product attention [Luong et al., 2015]
consists of the following two layers':

h ) . ) )
Attn(X) = X + Z__l WLWEX - o[(Wi X)TWEX], (1)
FF(X) = Attn(X) + Wy - ReLU(W; - Attn(X) 4+ by 17) + bo17, (2)

where W5, € RY™ Wy, Wi, W5 € R™* W, € R W, € R™? b, € R? by € R”, and
FF(X) is the output of the Transformer block. The number of heads h and the head size m are two
main parameters of the attention layer; and r denotes the hidden layer size of the feed-forward layer.

Notation. Given a matrix A, we use [|A[|, to denote the entry-wise /¥ norm of A. Let o[-] be the
softmax operator, which takes a matrix as input and applies softmax operation to each column of the
matrix, which results in a column stochastic matrix, i.e., a matrix that has non-negative entries with
all columns summing to 1. We use 1,, to denote a vector of length n whose entries are all 1. We
use d and n to denote the embedding dimension and the sequence length, respectively. We assume
throughout that n > 2, as the Transformers reduce to residual networks when n = 1.



Transformers as Universal Approximators

We define the Transformer networks as the composition of Transformer blocks. The family of the
sequence-to-sequence functions corresponding to the Transformers can be defined as:

Thmr . {g: Réxn 5 Rdxn | g is a composition of Transformer blocks th'f""'“"’:i}, (3)

where t"™7 : R4*n _, R9*" denotes a Transformer block defined by an attention layer with h
heads of size m each, and a feed-forward layer with r hidden nodes.

We say that a function f : R¥*"™ — RY*™ is permutation equivariant if for any permutation matrix
P, we have f(XP) = f(X)P;ie., if we permute the columns of X, then the columns of f({X)
are permuted in the same way. A Transformer block is permutation equivariant, which we formally
prove in Section B. This consequently establishes the permutation equivariance of the class 77"

Claim 1. A Transformer block t""™" defines a permutation equivariant map from R*™ to R4*™,



Transformers as Universal Approximators

3 Transformers are universal approximators of seq-to-seq functions

In this section, we present our results showing that the Transformer networks are universal approx-
imators of sequence-to-sequence functions. Let us start by defining the target function class Fpg,
which consists of all continuous permutation equivariant functions with compact support that map
R9*m to R9%™  Here, continuity is defined with respect to any entry-wise /Z norm, 1 < p < oc.
Given two functions f;. fy : R4*" — R4*" for1 < p < oo, we define a distance between them as

/
dp(f1, f2) = (/Hfl{X] ‘fE{X]“idX)l ’

The following result shows that a Transformer network with a constant number of heads h, head size
m, and hidden layer of size r can approximate any function in Fpg.

Theorem 2. Let 1 < p < oo and € > 0, then for any given [ € Fpg, there exists a Transformer
network g € T, such that d,(f, g) < e.



Transformers as Universal Approximators

3.1 Transformers with trainable positional encodings

In order to endow the Transformer networks with the ability to capture the information about the
position of tokens in the input sequence, it is a common practice to add positional encodings E €
R9*™ to the input sequence before feeding it to the Transformer network [Vaswani et al., 2017,
Devlin et al., 2018]. Consider the functions represented by Transformers with positional encodings:

T .= {gp(X) = g(X + E) | g € T"™" and E € R}, (4)

Here we show that if E is trainable, these positional encodings are sufficient to remove the permu-
tation equivariance restriction of the Transformers. Towards this, we define Fcp to be the set of all
continuous functions that map a compact domain in R?*" to R?*"_ Note that Fcp does not have
the restriction of permutation eguivariance as in Fpg, but any f € Fep is defined on a compact
domain instead of the whole R“*™. The following result states that, equipped with the trainable
positional encodings, Transformers can approximate any sequence-to-sequence function in Fop.

Theorem 3. Let 1 < p < oo and € > 0, then for any given f € Fcp, there exists a Transformer
network g € Tpg*l‘d such that we have d,(f.g) < e.



Transformers as Universal Approximators

4 Conclusion

In this paper, we prove that Transformer networks are universal approximators of any continuous and
permutation equivariant sequence-to-sequence functions, which shed light on the expressive power
of Transformer networks. We also theoretically validate the use of additive positional encodings in
Transformers, as they can remove the permutation equivaraince restriction and make Transformers
universal approximators of arbitrary continuous sequence-to-sequence functions.

In the supplementary material, we present the proofs of our theorems, which reveal that self-attention
layers in Transformer networks can compute contextual mappings; this is one of the crucial compo-
nents that make Transformer networks universal. We also discuss and experiment with other simpler
layers that can implement weaker forms of contextual mappings.



Transformers as Universal Approximators

C Proof of Theorem 2

Recall that we want to show that given a function f € Fpg, we can find a Transformer network
g € T%44 such that d,(f.,g) < e. Without loss of generality, we can assume that the compact

support of f is contained in [0, l]dx". We achieve our desired objective in three key steps:

Step 1. Approximate Fpr with piece-wise constant functions. We first use (a variant of) the
classical result that any continuous function can be approximated up to arbitrary accuracy by piece-
wise constant functions. For 4 > 0, we define the following class of piece-wise constant functions.

Fre(9d) := {f : X ZL@GJ Ap1{X € Sp} | f is permutation equivariant, Ay, € Rdx"} :

where G5 := {0,4,...,1 — §}9*™ and, for a grid point L € G;, Sg, := 1—[;1:1 [Ty Lk i +
§) C [0, 1]9*™ denotes the associated cube of width 4.

The following result states that the underlying function f € Fpg can be approximated using the
function class Fpg(d).

Lemmad4. Forany given f € Fprand 1 < p < oc, one can find a 6* > 0 such that 3 f € Fpg(8*)
which satisfies d,,(f, f) < €/3.



Transformers as Universal Approximators

Step 2. Approximate Fpp(d) with modified Transformers. We then consider a slightly modified
architecture for Transformer networks, where the softmax operator ¢[-| and ReLLU(-) are replaced by
the hardmax operator oy |-| and an activation function ¢ € ®, respectively. Here, the set of allowed
activations @ consists of all piece-wise linear functions with at most three pieces, where at least one

1,71, T

piece is constant. Let 7_J denote the function class corresponding to the sequence-to-sequence
functions defined by the modified Transformer networks. The following result establishes that the

: . =2,1,1 : L. =
modified Transformer networks in 7'2 can closely approximate functions in Fpg(d).

Proposition 5. For each f € Fpg(d)and1 <p < oo, g € T such that d,(f,g) = O(89/7).



Transformers as Universal Approximators

Step 3. Approximate modified Transformers with (original) Transformers. Finally, we show
thatg € 7 can be approximated by 721+, Let ¢ € 7214 be such that d,(7,9) < €/3.

The following result relies on the connection between the softmax operator and the hardmax opera-
tor; and the fact each activation ¢ € ® can approximated by the sum of four ReLLU’s.

Lemma 6. For eachq € 70 and 1 <p<oo, g€ T suchthatd,(g,q) < €/3.

Theorem 2 now follows from these three steps, because we have

dp(f,9) < du(f, ?) + dp(?:ﬁ) +d,(7,9) < 2¢/3 + O{‘id@)-
Choosing 4 < §* small enough ensures thatd,,(f, g) < e. []



Allometric Scaling

* Allometry studies the relationship between body size to shape. Goes back
to D'Arcy Thompson’s On Growth and Form (1917)
* In neurobiology, one can look at allometric scaling relationships:
 across different species with similar brain architectures [evolution],
* scaling relationships for different individuals of same species [growth],
* properties of the brain within the same individual [structure]
* The relationship between the two measured quantities is usually

expressed as a power law equation:
y = kx®

where a is the scaling exponent of the law.

* How should we interpret superlinear (&« > 1) or sublinear (&« < 1) scaling?



Allometric Scaling
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Allometric Scaling
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Fig. 1. Brain weights of guinea pigs (Cavia cobaya)

[Heinz Stephan, Heiko Frahm, and Georg Baron, "New and Revised Data on Volumes of Brain Structures in Insectovores and Primates," Folia Primatol., vol. 35, pp. 1-29, 1981.]



Allometric Scaling
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Scaling of the total basal cerebral metabolism with brain volume. The least-square fit
line for the log — log plot yields the following. (A) For the total oxygen consumption

rate, the scaling exponent was 0.86 + 0.04 (y = 0.86x - 1.02, R2=0.989, p < 104, n=7),
and its 95% confidence interval was 0.75 to 0.96. (B) For the total glucose utilization rate,
an identical exponent 0.86 + 0.03 was found (y = 0.86x - 0.09, R? =0.994, p < 104, n = 10)
and its 95% confidence interval was 0.80 to 0.91.

[Jan Karbowski, “Global and regional brain metabolic scaling and its functional consequences,” BMC Biology, 2007, 5:18.]



Are there common allometric scalings among
different kinds of networks?



Are there common allometric scalings among different
kinds of networks?

GCommon Scaling Laws for Gity
Highway Systems and the
Mammalian Neocortex s




Comparison of City Highway System and Neocortex Exponents for Quantities as a Function of Surface Area
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Generic Name Variable for City Highway Variable for Neocortex Neocortex Exponent

City Highways System Exponent

Surface area Land area 1 Total convoluted surface area 1

(a) No. of conduits No. of highways 0.759 (=0.083) Mo. of pyramidal neurons 34 =075

(b) Total no. of leaves Total no. exits 1.138 (+0.072) Total no. of synapses 9/8 = 1.125

(c) No. of leaves per conduit No. of exits per 0.379 (+=0.064) Mo. of synapses per neuron 3/8 = 0.375
highway

(d) Diameter of conduit Mo. of highway lanes  0.174 (+0.038) Diameter of white matter axon 1/8 = 0.125

(e) Propagation velocity Velocity of cross-city  0.108 (=0.021) Propagation velocity 1/8 = 0.125
travel of white matter axon

(f) Total surface area of conduits Total surface of 1.433 (+0.096) Total surface area of 11/8 = 1.375
highways white matter axons

Population 1.462 (=0.141)
Total volume of white y2=15
matter axons
(g) No. of compartments No. of concentric 0.390 (+0.055) Mo. of cortical areas 3/8 = 0.375

ring regions




A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist

Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution
networks.

The Origins of Scaling in Cities

Luis M. A. Bettencourt

Despite the increasing importance of cities in human societies, our ability to understand them
scientifically and manage them in practice has remained limited. The greatest difficulties to
any scientific approach to cities have resulted from their many interdependent facets, as social,
economic, infrastructural, and spatial complex systems that exist in similar but changing forms
over a huge range of scales. Here, | show how all cities may evolve according to a small set

of basic principles that operate locally. A theoretical framework was developed to predict the
average social, spatial, and infrastructural properties of cities as a set of scaling relations that
apply to all urban systems. Confirmation of these predictions was observed for thousands of
cities worldwide, from many urban systems at different levels of development. Measures of urban
efficiency, capturing the balance between sodioeconomic outputs and infrastructural costs,

were shown to be independent of city size and might be a useful means to evaluate urban
planning strategies.



Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish®
Johns Hopkins University, OpenAl OpenAl
jaredk@jhu.edu sam@openai.com
Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
henighan@openai.com tom@openal. com bchess@openai . com rewon@openai . com
Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl
scott@openai.com alec@openai.com jeffwvu@openai.com damodei@openai.com

We study empirical scaling laws for language model performance
on the cross-entropy loss. The loss scales as a power-law with
model size, dataset size, and the amount of compute used for
training, with some trends spanning more than seven orders of
magnitude. Other architectural details such as network width or
depth have minimal effects within a wide range.



Scaling Laws for Transfer

Danny Hernandez®

Jared Kaplan™ Tom Henighan' Sam MceCandlish'

When we train increasingly large neural networks from-scratch on a fixed-size
dataset, they eventually become data-limited and stop improving in performance
(cross-entropy loss). When we do the same for models pre-trained on a large
language dataset, the slope in performance gains is merely reduced rather than
going to zero. We calculate the effective data “transferred” from pre-training by
determining how much data a transformer of the same size would have required to
achieve the same loss when training from scratch. In other words, we focus on units
of data while holding everything else fixed. We find that the effective data
transferred is described well in the low data regime by a power-law of parameter
count and fine-tuning dataset size. We believe the exponents in these power-laws
correspond to measures of the generality of a model and proximity of distributions
(in a directed rather than symmetric sense). We find that pre-training effectively
multiplies the fine-tuning dataset size.



Scaling Laws Under the Microscope:
Predicting Transformer Performance from Small Scale Experiments

Maor Ivgi Yair Carmon Jonathan Berant
Tel-Aviv University Tel-Aviv University Tel-Aviv University

Neural scaling laws define a predictable relationship between a model's parameter count
and its performance after training in the form of a power law. However, most research to
date has not explicitly investigated whether scaling laws can be used to accelerate model
development. In this work, we perform such an empirical investigation across a wide
range of language understanding tasks, starting from models with as few as 10K
parameters, and evaluate downstream performance across 9 language understanding
tasks. We find that scaling laws emerge at finetuning time in some NLP tasks, and that
they can also be exploited for debugging convergence when training large models.
Moreover, for tasks where scaling laws exist, they can be used to predict the performance
of larger models, which enables effective model selection.



Scaling Laws for Transformers

Model performance depends most strongly on scale, which consists of three factors: the number
of model parameters N (excluding embeddings), the size of the dataset D, and the amount of
compute C used for training. Within reasonable limits, performance depends very weakly on
other architectural hyperparameters such as depth vs. width.

Performance has a power-law relationship with each of the three scale factors N, D, C when not
bottlenecked by the other two, with trends spanning more than six orders of magnitude
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https://arxiv.org/pdf/2001.08361.pdf



Scaling Laws for Transformers

* Universality of overfitting: Performance improves predictably as long as we scale up N and D in
tandem, but enters a regime of diminishing returns if either N or D is held fixed while the other
increases. The performance penalty depends predictably on the ratio N°74/D, meaning that every
time we increase the model size 8x, we only need to increase the data by roughly 5x to avoid a

penalty.

[Biological % law?]

* Universality of training: Training curves follow predictable power-laws whose parameters are
roughly independent of the model size. By extrapolating the early part of a training curve, we can
roughly predict the loss that would be achieved if we trained for much longer.

* Transfer improves with test performance: When we evaluate models on text with a different
distribution than they were trained on, the results are strongly correlated to those on the training
validation set with a roughly constant offset in the loss — in other words, transfer to a different
distribution incurs a constant penalty but otherwise improves roughly in line with performance on

the training set.

https://arxiv.org/pdf/2001.08361.pdf



Scaling Laws for Transformers

* Sample efficiency: Large models are more sample-efficient
than small models, reaching the same level of performance
with fewer optimization steps and using fewer data points.

Test Loss 10

Larger models require fewer samples

to reach the same performance

Tokens Processed

* Convergence is inefficient: When working within a fixed compute budget C but without any other restrictions
on the model size N or available data D, we attain optimal performance by training very large models and
stopping significantly short of convergence. Maximally compute-efficient training would therefore be far more
sample efficient than one might expect based on training small models to convergence, with data

requirements growing very slowly as D ~ C%27 with training compute.

https://arxiv.org/pdf/2001.08361.pdf



Loss vs Model and Dataset Size
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with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.



