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Transformers as Universal over Domains

[https://magenta.tensorflow.org/music-transformer, https://www.kaggle.com/piantic/vision-transformer-vit-visualize-attention-map, 
https://neuravest.net/how-transformers-with-attention-networks-boost-time-series-forecasting/]



Transformers as Universal Predictors?
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Allometric Scaling

• Allometry studies the relationship between body size to shape.   Goes back 
to D'Arcy Thompson’s On Growth and Form (1917)

• In neurobiology, one can look at allometric scaling relationships:

• across different species with similar brain architectures [evolution],

• scaling relationships for different individuals of same species [growth], 

• properties of the brain within the same individual [structure]

• The relationship between the two measured quantities is usually 
expressed as a power law equation:

𝑦 = 𝑘𝑥𝛼

where 𝛼 is the scaling exponent of the law.

• How should we interpret superlinear (𝛼 > 1) or sublinear (𝛼 < 1) scaling?



[https://en.wikipedia.org/wiki/Brain-to-body_mass_ratio]

Encephalization quotient
E = CS2, where E and S are body and brain weights

Allometric Scaling



[Heinz Stephan, Heiko Frahm, and Georg Baron, "New and Revised Data on Volumes of Brain Structures in Insectovores and Primates," Folia Primatol., vol. 35, pp. 1-29, 1981.]

Allometric Scaling



Scaling of the total basal cerebral metabolism with brain volume. The least-square fit 
line for the log – log plot yields the following. (A) For the total oxygen consumption
rate, the scaling exponent was 0.86 ± 0.04 (y = 0.86x - 1.02, R2 = 0.989, p < 10-4, n = 7), 
and its 95% confidence interval was 0.75 to 0.96. (B) For the total glucose utilization rate, 
an identical exponent 0.86 ± 0.03 was found (y = 0.86x - 0.09, R2 = 0.994, p < 10-4, n = 10) 
and its 95% confidence interval was 0.80 to 0.91.

[Jan Karbowski, “Global and regional brain metabolic scaling and its functional consequences,” BMC Biology, 2007, 5:18.]

Allometric Scaling



Are there common allometric scalings among 
different kinds of networks?



Are there common allometric scalings among different 
kinds of networks?







We study empirical scaling laws for language model performance 
on the cross-entropy loss. The loss scales as a power-law with 
model size, dataset size, and the amount of compute used for 
training, with some trends spanning more than seven orders of 
magnitude. Other architectural details such as network width or 
depth have minimal effects within a wide range. 



When we train increasingly large neural networks from-scratch on a fixed-size 
dataset, they eventually become data-limited and stop improving in performance 
(cross-entropy loss). When we do the same for models pre-trained on a large 
language dataset, the slope in performance gains is merely reduced rather than 
going to zero. We calculate the effective data “transferred” from pre-training by 
determining how much data a transformer of the same size would have required to 
achieve the same loss when training from scratch. In other words, we focus on units 
of data while holding everything else fixed. We find that the effective data 
transferred is described well in the low data regime by a power-law of parameter 
count and fine-tuning dataset size. We believe the exponents in these power-laws 
correspond to measures of the generality of a model and proximity of distributions 
(in a directed rather than symmetric sense). We find that pre-training effectively 
multiplies the fine-tuning dataset size.



Neural scaling laws define a predictable relationship between a model's parameter count 
and its performance after training in the form of a power law. However, most research to 
date has not explicitly investigated whether scaling laws can be used to accelerate model 
development. In this work, we perform such an empirical investigation across a wide 
range of language understanding tasks, starting from models with as few as 10K 
parameters, and evaluate downstream performance across 9 language understanding 
tasks. We find that scaling laws emerge at finetuning time in some NLP tasks, and that 
they can also be exploited for debugging convergence when training large models. 
Moreover, for tasks where scaling laws exist, they can be used to predict the performance 
of larger models, which enables effective model selection.



https://arxiv.org/pdf/2001.08361.pdf

Scaling Laws for Transformers

Model performance depends most strongly on scale, which consists of three factors: the number 
of model parameters N (excluding embeddings), the size of the dataset D, and the amount of 
compute C used for training. Within reasonable limits, performance depends very weakly on 
other architectural hyperparameters such as depth vs. width.

Performance has a power-law relationship with each of the three scale factors N, D, C when not 
bottlenecked by the other two, with trends spanning more than six orders of magnitude



Scaling Laws for Transformers

• Universality of overfitting: Performance improves predictably as long as we scale up N and D in 
tandem, but enters a regime of diminishing returns if either N or D is held fixed while the other 
increases. The performance penalty depends predictably on the ratio N0.74/D, meaning that every 
time we increase the model size 8x, we only need to increase the data by roughly 5x to avoid a 
penalty.

• Universality of training: Training curves follow predictable power-laws whose parameters are 
roughly independent of the model size. By extrapolating the early part of a training curve, we can 
roughly predict the loss that would be achieved if we trained for much longer.

• Transfer improves with test performance: When we evaluate models on text with a different 
distribution than they were trained on, the results are strongly correlated to those on the training 
validation set with a roughly constant offset in the loss – in other words, transfer to a different 
distribution incurs a constant penalty but otherwise improves roughly in line with performance on 
the training set.

[Biological ¾ law?]

https://arxiv.org/pdf/2001.08361.pdf



• Sample efficiency: Large models are more sample-efficient 
than small models, reaching the same level of performance 
with fewer optimization steps and using fewer data points. 

Scaling Laws for Transformers

• Convergence is inefficient: When working within a fixed compute budget C but without any other restrictions 
on the model size N or available data D, we attain optimal performance by training very large models and 
stopping significantly short of convergence. Maximally compute-efficient training would therefore be far more 
sample efficient than one might expect based on training small models to convergence, with data 
requirements growing very slowly as D ∼ C0.27 with training compute.

https://arxiv.org/pdf/2001.08361.pdf



as we increase the model size, we should increase the 
dataset size sublinearly according to D ∝ N^{αN/αD} ∼
N0.74


