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3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give a visual 1dea of how this series of processes approaches a language, typical sequences 1n the approx-
imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HIQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

(Shannon, 1948)



5. First-order word approximation. Rather than continue with tetragram, . .. , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further struc-
ture 1s included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
these samples have reasonably good structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more
words can easily be placed in sentences without unusual or strained constructions. The particular sequence
of ten words “attack on an English writer that the character of this™ 1s not at all unreasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.

(Shannon, 1948)



4. GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS

Stochastic processes of the type described above are known mathematically as discrete Markoff processes
and have been extensively studied in the literature.® The general case can be described as follows: There
exist a finite number of possible “states” of a system; S1,52,...,5:. In addition there 1s a set of transition
probabilities; p;(j) the probability that if the system is in state S; it will next go to state S;. To make this
Markoff process into an information source we need only assume that a letter i1s produced for each transition
from one state to another. The states will correspond to the “residue of influence” from preceding letters.
The situation can be represented graphically as shown in Figs. 3, 4 and 5. The “states” are the junction

D 2

Fig. 3— A graph corresponding to the source in example B.

(Shannon, 1948)
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In the footnote to this conclusion he considers the possibility of a useful probabilistic/statistical model,
saying "'[ would certainly not care to argue that ... 1s unthinkable, but I know of no suggestion to this
effect that does not have obvious flaws.” The main "obvious flaw” 1s thus: Consider:

I never, ever, ever, ever, ... fiddle around 1n any way with electrical equipment.

. She never, ever, ever, ever, ... fiddles around 1n anv way with electrical equipment.
. * I never, ever, ever, ever, ... fiddles around in anv wav with electrical equipment.
_® She never, ever, ever, ever, ... fiddle around 1n anv way with electrical equipment.

e Lad P e

No matter how many repetitions of "ever” vou insert, sentences 1 and 2 are grammatical and 3 and 4 are
ungrammatical. A probabilistic Markov-chain model with » states can never make the necessary
distinction (between 1 or 2 versus 3 or 4) when there are more than » copies of "ever.”" Therefore, a
probabilistic Markov-chain model cannot handle all of English.

This criticism 1s correct, but it 15 a criticism of Markov-chain models—it has nothing to do with
probabilistic models (or trained models) at all. Moreover, since 1957 we have seen many tvpes of
probabilistic language models beyond the Markov-chain word models. Examples 1-4 above can in fact
be distinguished with a finite-state model that 1s not a chain, but other examples require more
sophisticated models. The best studied 15 probabilistic context-free grammar (PCF(G), which operates
over trees, categories of words, and individual lexical items, and has none of the restrictions of finite-
state models. We find that PCF Gs are state-of-the-art for parsing performance and are easier to learn
from data than categorical context-free grammars. Other types of probabilistic models cover semantic

https://norvig.com/chomsky.html
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Context-free grammar

From Wikipedia, the free encyclopedia

In formal language theory, a context-free grammar (CFG) is a formal grammar

{Stmt)
whose production rules are of the form T .. . B, st
(Expry (O0pir)y (Expr)
)
A — o ¥ (Optr}
_ . . ) . *  (Expr
with A a single nonterminal symbaol, and ¢ a string of terminals and/or N
- - e - . ] {5tmt}
nonterminals (¢ can be empty). A formal grammar is "context free" if its (Stmt) — (Id) = (Expr} ; I StnrList] I
) ) i (Stmt) = | {StmtList) ] TatY ;
production rules can be applied regardless of the context of a nonterminal. No (Stmt) — if ¢ (Expr) ) (Stmt) LERLD )
; . . ) . {StmitList) — (Stmt) W
matter which symbols surround it, the single nonterminal on the left hand side (StmiList) —» (StmtList) (Stmt) ) - e
can always be replaced by the right hand side. This is what distinguishes it from EF"'? el {Num)
. ) : pry) |.--'"-[||. ) . 0 I:H‘I]]Ll:l
a context-sensitive grammar. (Expr) — (Expr) (Opir} {Expr} i oy :
{Id) = x R Eoxpr
¥ {Expr}
A formal grammar is essentially a set of production rules that describe all ﬂ[‘f“li o {Expr] {Optr) {Expr)
! I}
possible strings in a given formal language. Production rules are simple (Num) — 1 v {Optr)
. ) Num) = 9 TTH {Expr)
replacements. For example, the first rule in the picture, {Optr) — > R
{Optr) — + if { x > s 3{ x = 0 ¥y = 7y + 1)

(Stmt) — (Id) = (Expr);
Simplified excerpt of the formal grammar” for the C programming language (left), and a derivation of a =

piece of C code {right) from the nonterminal symbol {Stmt]l. Monterminal and terminal symbols are shown in
blue and red, respectively.

replaces (Stmt) with (Id) = (Expr};. There can be multiple replacement
rules for a given nonterminal symbol. The language generated by a grammar is
the set of all strings of terminal symbols that can be derived, by repeated rule
applications, from some particular nonterminal symbol ("start symbol").
Nonterminal symbols are used during the derivation process, but do not appear in its final result string.



What did Chomsky mean, and is he right?

[ take Chomsky's points to be the following:

A Statistical language models have had engineering success, but that 1s irrelevant to science.

B. Accurately modeling linguistic facts 1s just butterfly collecting; what matters in science (and
spectficallyv linguistics) 1s the underlving principles.

C. Statistical models are incomprehensible; they provide no insight.

D). Statistical models mav provide an accurate simulation of some phenomena, but the simulation 13
done completely the wrong way; people don't decide what the third word of a sentence should be
bv consulting a probability table keved on the previous two words, rather thev map from an
internal semantic form to a syntactic tree-structure, which 1s then lineanzed into words. This 13
done without any probability or statistics.

E. Statistical models have been proven incapable of learning language; therefore language must be
innate_ so why are these statistical modelers wasting their time on the wrong enterprise?

https://norvig.com/chomsky.html



Is he right? That's a long-standing debate. These are myv answers:

A T agree that engineering success 1s not the goal or the measure of science. But I observe that
science and engineering develop together, and that engineering success shows that something 1s
working right, and so 1s evidence (but not proof) of a scientificallv successful model.

B. Science 1s a combination of gathering facts and making theories; netther can progress on 1ts own. [
think Chomsky 1s wrong to push the needle so far towards theory over facts; in the history of
science, the laborious accumulation of facts 1s the dominant mode, not a novelty. The science of
understanding language 1s no different than other sciences in this respect.

C. I agree that 1t can be difficult to make sense of a model containing billions of parameters.
Certainly a human can't understand such a model by inspecting the values of each parameter
individually. But one can gain insight by examing the properties of the model—where 1t succeeds
and fails, how well it learns as a function of data, etc.

https://norvig.com/chomsky.html



D._ I agree that a Markov model of word probabilities cannot model all of language. It 1s equally true
that a concise tree-structure model without probabilities cannot model all of language. What 1s
needed 15 a probabilistic model that covers words, trees, semantics, context, discourse, etc.
Chomsky dismisses all probabilistic models because of shortcomings of particular 30-vear old
models. [ understand how Chomsky arrives at the conclusion that probabilistic models are
unnecessary, from his study of the generation of language. But the vast majority of people who
studv interpretation tasks, such as speech recognition, quickly see that interpretation 15 an
inherently probabilistic problem: given a stream of noisy input to my ears, what did the speaker
maost likely mean? Einstein said to make everything as simple as possible, but no simpler. Many
phenomena 1n science are stochastic, and the simplest model of them 1s a probabilistic model; I
believe language 15 such a phenomenon and therefore that probabilistic models are our best tool
for representing facts about language, for algorithmically processing language, and for
understanding how humans process language.

https://norvig.com/chomsky.html
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Can one learn a language model for a (probabilistic) context-free grammar
source and do information-theoretic probing of what rules are learned?
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An example of applying a shared MLP depending on two last inputs. Inputs are denoted by blue nodes
(bottom), intermediate representations are denoted by orange nodes (middle), and output probabilities
are denoted by green nodes (top). Notice that a probability 0, is not dependent on x;

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]
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An example of applying an RNN depending on two last inputs. Inputs are denoted by blue nodes
(bottom), intermediate representations are denoted by orange nodes (middle), and output

probabilities are denoted by green nodes (top). Notice that compared to the approach with a
shared MLP, there is an additional dependency between intermediate nodes h;

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]
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An example of applying causal convolutions. The kernel size is 2, but by applying dilation in higher
layers, a much larger input could be processed (red edges), thus, a larger memory is utilized. Notice
that the first layers must be option A to ensure proper processing

[J. M. Tomczak, Deep Generative Modeling, Springer, 2022.]



