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Mathematical limit theorems
for computational creativity

Creativity is the generation of an idea or artifact judged to be novel
and high-guality by a knowledgeable social group, and is often said

to be the pinnacle of intelligence. Several computational creativity
systems of various designs are now being demonsirated and
deploved. These myriad design possibilities raise the natural
question: Are there fundamental limits to creativity? Here, we define
a mathematical abstraction to capture key aspects of combinatorial
creativity and study fundamental tradeoffs between novelty and
guality. The functional form of this fundamental limit resembles the
capacity-cast relationship in information theory, especially when
measuring novelty using Bayesian surprise—the relative entropy
between the empirical distribution of an inspiration set and that set

updated with the new idea or artifaci. As such, we show how
information geometry technigues provide insight into the limits of

creativity and find that the maturity of the creative domain directly

parameterizes the fundamental limit. This result is extended to the
case when there is a diverse audience for creativity and when the

guality function is not known but must be estimated from samples.

L. R. Varshney
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Towards a formalism

Creativity is the generation of an
artifact thatis judged to be
novel and also to be appropriate,
useful, or valuable by a suitably
knowledgeable social group.



Bayesian surprise as novelty

PB R
S(R,B) = D(Pgr||Ps) = j Paix logp—ldB
B

)/ B

newly created recipe posterior beliefs

personalized
repository of prior
food experience

prior beliefs

Surprise Humans

[Itti and Baldi, 2006]



Basic Tradeoff in Creativity: Average Case

Novelty-Quality tradeoff in Creativity

S = max Els(4,®
(@ Pa(a):E[q(A)]zQ s( )]

Lemma [Varshney, 2013]
E[s(4,0)] =1(4,0).

A Note on the Inception Score

Shane Barratt™' Rishi Sharma ™!

Corollary
S = max I(A,0
() Pa(a):E[q(A)]zQ (4,6)

(Shannon’s capacity-cost function)



2.1. Desiderata

Before delving into the explanation of evaluation measures, first I list a
number of desired properties that an efficient GAN evaluation measure should
fulfill. These properties can serve as meta measures to evaluate and compare the
GAN evaluation measures. Here, | emphasize on the qualitative aspects of these
measures. As will be discussed in Section 3, some recent works have attempted
to compare the meta measures quantitatively (e.g. computational complexity of
a measure). An efficient GAN evaluation measure should:

1

3.

6.

7.

favor models that generate high fidelity samples (2.e. ability to distinguish
generated samples from real ones: discriminability).

. favor models that generate diverse samples (and thus is sensitive to over-

fitting, mode collapse and mode drop, and can undermine trivial models
such as the memory GAN),

favor models with disentangled latent spaces as well as space continuity
(a.k.a controllable sampling),

have well-defined bounds (lower, upper. and chance).

. be sensitive to image distortions and transformations. GANs are often

applied to image datasets where certain transformations to the input do
not change semantic meanings. Thus, an ideal measure should be invariant
to such transformations. For instance. score of a generator trained on
CelebA face dataset should not change much if its generated faces are
shifted by a few pixels or rotated by a small angle.

agree with human perceptual judgments and human rankings of models,
and

have low sample and computational complexity.

In what follows, GAN measures will be discussed and assessed with respect

to the above desiderata. and a summary will be presented eventually in Section 3.

See Table 2.

https://arxiv.org/pdf/1802.03446.pdf



| Measure Description |

. # Log likelihood of explaining realworld held out /test data using & density estimated from the generated data
1. Average Log-likelihood |18, 22] (e.g. using KDE or Parzen window estimation). L = -;]:r %, log P nder(3:)
@ [he probability mass of the true data ‘covered by the model distribution
O i= PoaialdPosdet = t) with ¢ such that P abqet{dPosder = t) = 0.95

Inception Score (15) [3] # KLD between conditional and marginal label distributions over generated data. exp (Ex [EL (piv | %1 || (¥}
Modified Inception Score (m-15) [34] » Encourages diversity within images sampled Tomn a particular category. exp{Ey, [E, a3 )P a2y

Similar to IS but also takes into account the prior distribution of the labels over real data.

Mode Score (MS) [35 * ’

° (MS) 130 exp (By [KL (p(y | x) | p (572"))] ~ KL (p(3) | p (5")))
# Takes into account the KLD between distributions of training labels vs. predicted labels,
as well as the entropy of predictions. EL{p(3***) || p{y))+Ex [ny|x‘,|]
® Wasserstein-2 distance hetween multi-variate Laaussians htted to data embedded into a leature space
FID(r,g) = |lur — pgll3 + Tr(E + By — 2(E,E,)?)
& Maximum Mean Discrepancy (MMD) # Measures the dissimilarity between two probability distributions F+ and Fy using samples drawn independently
[-35] from each distribution. My (Fr, Fy) = Ey wep, [kix.x")] — 2B p,_ P [k{x, ¥)] + Ey P, [k(w.u']
# 'he critic {e.g. an E"I."-..] 15 trained to produce high values at real samples and low values at generated samples
W (Xpests Xg) = 5 T ) Fxeentlil) — & 2| Flxglil)

Coverage Metric [33)

e R A

6. AM Score [36]

7. Fréchet Inception Distance (FID) [37)

9. The Wasserstein Critic [30]

2 10. Birthday Paradox Test [27] ® Measures the support size of a discrete [continuous) distribution by counting the duplicates (near duplicates )
E 11. Classifier Two Sample Test (C25T) [40] » Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)
= ) i ® An indirect technique for evaluating the quality of unsupervised representations
g 12 Clamification. Feclmmmnce [1, 26 (e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].
:5', 13. Boundary Distortion [42] ® Measures diversity of generated samples and covariate shift using classification methods.
14. Mumber of Statistically-Different Bins # Given two sets of samples from the same distribution, the number of samples that
(NDB) [43] fall into & given bin should be the same up to sampling noise
15. Image Retrieval Performance [44) ® Measures the distributions of distances to the nearest neighbors of Some query Images [i.e. diversity}
16. Generative Adversarial Metric (GAM) & Compares two GGANs by having them engaged in a battle against each other by swapping discriminators
|31] or generators. p(xly = L; M) )/plx|ly = 1; M) = (ply = Ux; Dy )p(x; G2)) / (ply = 1) Da)pix; 1))
17. Tournament Win Rate and Skill # lmplements a tournament in which a plaver is either a discriminator that attempts to distinguish between
Rating [45] real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.
18. Mormalized Relative Discriminative # Compares n G ANs based on the idea that if the generated samples are closer to real ones,
Score (NRDS) [32] more epochs would be needed to distinguish them from real samples.

® Adversarial Accuracy. Lomputes the classification accuracies achieved by the two classiliers, one trained
on real data and another on generated data, on a labeled validation set to approximate Fj(y|x] and F{y|x).
Adversarial Divergence: Computes EL{ Py (y|x). P (ylx))

20. Geometry Score [47] ® Compares geometrical properties of the underlyving data manifold between real and generated data.

# Measures the reconstruction error (e.g. Lz norm) between a test image and its closest

generated image by optimizing for = (i.e. ming||G(z) — 1[1"'”||"!}

22. lmage Quality Measures |49, 50, 51] " Evaluates the quality of generated images using measures such as S5Ih, PSN R, and sharpness diflerence

# Evaluates how similar low-level statistics of generated images are to those of natural scenes

in terms of mean power spectrum, distribution of random filter responses, contrast distribution, ete.

ABAd e el meed B e 37 P T | T T T T o T T Y . T TR

19. Adversarial Accuracy and Divergence
|46]

21. Reconstruction Error [48]

23. Low-level Image Statistics |52, 53]




Qualitative
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Mearest Meighbors

Rapid Scene Categorization [18]
Preference Judgment [54, 55, 56, 57)
Mode Drop and Collapse |58, 59]

Network Internals |1, 60, 61, 62, 63, 64]

# To detect overfitting, generated samples are shown next to their nearest neighbors in the training set

# Iln these experiments, participants are asked to distinguish generated samples from real images
in & short presentation time (e.g. 100 ms); i.e. real v.s fake

# Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)

# Uver datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring
the distances of generated data to mode centers

® Regards exploring and illustrating the internal representation and dynamics of models | e.g. Space continuity)
as well as visualizing learned features




3. Inception Score (IS). Proposed by Salimans et al. [3], it is perhaps
the most widely adopted score for GAN evaluation (e.g. in [67]). It
uses a pre-trained neural network (the Inception Net [68] trained on the
ImageNet [69]) to capture the desirable properties of generated samples:
highly classifiable and diverse with respect to class labels. It measures the
average KL divergence between the conditional label distribution p(y|x)
of samples (expected to have low entropy for easily classifiable samples;
better sample quality) and the marginal distribution p(y) obtained from
all the samples (expected to have high entropy if all classes are equally
represented in the set of samples; high diversity). It favors low entropy of
p(y|x) but a large entropy of p(y).

exp (Ex [KL (p(y | x) | p(y))]) = exp (H(y) — Ex [H(y|x)]), (1)

where p (v | x) is the conditional label distribution for image x estimated
using a pretrained Inception model [68], and p(y) is the marginal distri-
bution: p(y) = 1/N Elep (v | xn = G (z,)). H(x) represents entropy of
variable x.

The Inception score shows a reasonable correlation with the quality and
diversity of generated images [3|. IS over real images can serve as the upper
bound. Despite these appealing properties, IS has several limitations:



(a)

(e

(f

First, similar to log-likelihood, it favors a “memory GAN" that stores
all training samples, thus is unable to detect overfitting (i.e. can be
fooled by generating centers of data modes [46]). This is aggravated

by the fact that it does not make use of a holdout validation set.
Second, it fails to detect whether a model has been trapped into

one bad mode (i.e. is agnostic to mode collapse). Zhou et al. [36],

however, shows results on the contrary.
Third, since IS uses Inception model that has been trained on Ima-

geNet with many object classes, it may favor models that generate

good objects rather realistic images.
Fourth, IS only considers P, and ignores F,.. Manipulations such as

mixing in natural images from an entirely different distribution could
deceive this score. As a result, it may favor models that simply learn

sharp and diversified images, instead of P, [26]°.
Fifth, it is an asymmetric measure.
Finally, it is affected by image resolution. See Fig. 2.



Desiderata
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1. Average Log- likelihood 115, 22]  low low - Foo, o] low  low low

2. Coverage Metric [33] low lovw - [0, 1] low lovwr -
3. Inception Score (I3) [3] high  moderate - [1, =] high moderate  high
4. Modified Inception Score (m-15) [34] high  moderate - |1, =<| high moderate  high
5. Mode Score (MS) [35] high  moderate - |0, =] high moderate  high
6. AM Score [36] high  moderate - |0, =] high moderate  high
7. Fréchet Inception Distance (FID) |37] high  moderate - |0, =] high  high high

8. Maximum Mean Discrepancy (MMD) |38]  high low - [0, =] - - -
9. The Wasserstein Critic [39]  high  moderate - |0, =] - - low

10. Birthday Paradox Test [27]  low high -  [Loo] low  low -

11. Classifier Two Sample Test (C25T) [0]  high low - [0, 1] - - -

12, Classification Performance [1, 15]  high low - [0, 1] low - -

13. Boundary Distortion [42] low lovw - [0, 1] - - -

14. NDB 3]  low high - [0, oo - low -

15. Image Retrieval Performance [44] moderate low - * low - -

16. Generative Adversarial Metric (GAM) |31]  high low - * - - moderate

17. Tournament Win Rate and Skill Rating [45]  high high - - : ] low
18. NRDS [32]  high low - [0, 1] - - poor

19. Adversarial Aceuracy & Divergence [46]  high low - o, 1), [0, 2] - - -
20. Geometry Score [47] low low - |0, =] - low low

21. Reconstruction Error [48] low lovw - |0, =] - moderate moderate

22. Image Quality Measures |49, 50, 51] low moderate - * high  high high

23. Low-level Image Statistics |52, 53] low low - * low low -

24. Precision, Recall and F) score [23] low high [0, 1] - - -




Cuantitative Latent Space
IAnalysis Overfitting  Disentan-  Deepfake
{Optimization CQualitative /Memorization glermant Creteclion
FID & IS Variants

Spatial FID (sFID) Analysis

Class-aware FID (CAFD)

Conditicnal FID o

Fasi FID Optimization

Mermarization-informad FID (MIFID)

Unblased FID and IS

Clean FID Analysis

Fre'ched Video Distance (FVD)

Methods based on Self-supervised

Learned Representations Analysis
Mathods based on

Analysing Data Manifold

Local Intrinsic Demensicnality (LIDH

Imirinsic Multi-scale Distance [IMD)

Parceptual Path Length (PPL)

Linear Separability in Labanl Space
Classification Accuracy Score (CAS) -
F:Jm-ﬁﬁﬂl: Tests to Debect
Measures that Probe Generalization Analysis
Mew Ideas based on Precision and
Recall (P&R]

Density and Coverage

Alpha Precision and Recal
Duality GAP Metric
Spectral Methods
Caption Score {Cap5) - -
Human Eye Perceptual Evaluation (HYPE)

Neurascore
GAN Steerability & Dissection
A Universal Fake ve. Real Detector -

https://arxiv.org/pdf/2103.09396.pdf



