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EXPLAINABILITY IN DATA SCIENCE: INTERPRETABILITY, 
REPRODUCIBILITY, AND REPLICABILITY

C reativity is often thought of as the pinnacle of human 
achievement, but artificial intelligence (AI) is now starting 
to play a central role in creative processes, whether autono-

mously or in collaboration with people. Widespread deployment 
is now pushing for explanations on how creative AI is working, 
whether to engender trust, enable action, provide a basis for eval-
uation, or for intrinsic reasons. In this article, we review various 
motivations, algorithms, and methods for explaining either the 
workings of generative/creative AI algorithms or the generative/
creative artifacts they produce.

Introduction
In October 2018, a piece of art, “Edmond de Belamy, from La 
Famille de Belamy,” was sold by Christie’s auction house for 
US$432,500 to an anonymous bidder, hundreds of thousands of 
dollars more than works by Andy Warhol and Roy Lichtenstein 
in the same auction. Generated by the French art collective Ob-
vious using a generative adversarial network (GAN), this was 
putatively the first auctioned artwork generated by AI [1]. In 
early 2019, the McCormick spice company began widespread 
sales of the ONE line of seasoning mixes, created using a suc-
cessor to the IBM Chef Watson culinary creativity system that 
used stochastic sampling and selection algorithms [2]. By early 
2021, de novo AI-generated and experimentally verified anti-
microbial peptides were reported in the scientific literature, cre-
ated using variational autoencoder (VAE) techniques [3], and 
separately using Transformer-based autoregressive language 
modeling methods [4]. Image generation from text descriptions, 
as in OpenAI’s Transformer-based DALL-E system from early 
2021 [5], is now even said to meet the standards of tests for 
general creativity [6].

As has been described by the Computer Scientist and Cog-
nitive Scientist Margaret Boden, creativity is often regarded 
as the pinnacle of intelligence, humanity’s crowning glory, 
and yet, it is not fully understood. Moreover, many regard its 
unintelligibility as its splendor, not to be sullied by scientif-
ic explanation [7]. Due to the widespread deployment of AI 
technologies in settings involving people, however, there is 
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growing interest in explaining their results—whether to engen-
der trust, enable action, provide a basis for evaluation, or for 
intrinsic reasons [8]. Noting that explanation is infinitely vari-
able and that there can be many valid explanations for given 
phenomena, Selbst and Barocas have specifically suggested 
addressing inscrutability and nonintuitiveness. Inscrutability 
is when AI models available for direct inspection may defy 
understanding due to their complexity; nonintuitiveness is 
when AI models are based on statistical relationships that defy 
human intuition even when they may be understandable.

Much past work in interpretable and explainable AI (XAI) 
has focused on decisions and predictions, see, e.g., [9]–[11]; 
here instead, we consider explainability for generative/creative 
algorithms or for the ideas and artifacts they produce. Inter-
pretability for generative and creative models is critical as they 
are becoming widely used in many application domains, not 
only in settings we have noted, but also more broadly in engi-
neering, design, science, and the arts.

Moreover, generative models are being used for nefarious 
purposes such as deepfakes and fake news. Distinguishing 
deepfakes/fake news from authentic content becomes more dif-
ficult for better generative models, and the state of the field is 
such that often people cannot tell the difference [12]. Existing 
hypothesis-testing techniques focus on specific hand-crafted 
features, domain knowledge, and using machine learning itself 
to find statistical differences. AI-governance techniques that 
consider the social positioning of generative AI models [13] 
may be needed to ensure safety in the face of misinformation. 
Such governance can be enhanced through a well-documented 
and explainable understanding of their workings and results.

In artistic domains, explainability is also intertwined with 
intentionality—a (human) intent, inspiration, or desire to express 
something [14], [15]. It is said, especially in the Western tradition 
following Romanticism, that communication of meaning in art 
is necessary for eliciting an aesthetic experience. For example, 
considering narration or poetry, (linguis-
tic) meaning is the relationship between 
a linguistic form and communicative 
intent, where communicative intents are 
about things that are outside of language. 
Communicative intent is distinct from 
standing meaning, which is constant 
across all of its possible contexts of use 
[16]. Recent surveys further indicate that 
people want not just novelty/quality, but 
also intentionality and autonomy, to attri-
bute creativity to an artificial system [17]. 

The specific generative techniques 
we have described thus far include ones 
based on deep learning, such as VAEs, 
GANs, autoregressive models such as 
Transformers, and normalizing flow 
models, which, in their original form, 
are inscrutable and nonintuitive. Later 
in this article, we discuss posthoc tech-
niques (including visual analytics) that 

have recently been developed for interpreting the knowledge 
present within these models, which is used as a part of the gen-
erative process and for interpreting the outputs of these kinds 
of models. The examples include the so-called BERTology 
approach to interpreting the knowledge in large-scale language 
models by probing attention mechanisms, and a traveling sales-
person path-based explanation of combinatorially creative arti-
facts, respectively.

Further, we discuss recent extensions of these generative 
techniques that facilitate interpretability. We also examine 
emerging generative algorithms that are intrinsically interpre-
table, such as information lattice learning (ILL), a framework 
with group- and information-theoretic foundations), disentan-
gled generative models, and computational creativity algorithms 
based on stochastic sampling and on-case-based reasoning.

Although some of the generative models we evaluate require 
massive data sets and computational infrastructure (including 
specialized hardware) for training and creative generation [18], 
others may work well with tiny data sets of just a few examples 
[19]. For the ones that do require large-scale data and computa-
tions, scalability and speedups can be achieved by using meth-
ods such as efficient linear-time attention, adaptive bucketing of 
batches, open source parallelization, or combinations of these 
techniques (see, e.g., [20]).

A key part of our synthesis in this review is a discussion of 
best practices to obtain insights through explainability in gen-
erative algorithms. As shown in Figure 1, we believe there can 
be a virtuous interaction among research in creative AI and 
XAI, all while interacting with human experts. In particular, 
this is the case when considering different kinds of creativ-
ity—combinatorial (which brings existing ideas together in 
new ways), exploratory (which expands the conceptual space), 
or transformational (which requires a completely new repre-
sentation of conceptual domains) [7]—and when consider-
ing a variety of explainability techniques, whether posthoc 
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FIGURE 1. The expected improvements due to pursuing research at the intersection of creative AI, XAI, 
and human–AI interaction.
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or intrinsic. Notably, one may develop explanation-guided AI 
creations as well as more robust AI explanations. Moreover, 
when interacting with human experts, the result may be bet-
ter human–AI creative collaborations as well as better human-
interpretable and trustworthy knowledge discovery.

Generative and Creative AI
We have given examples thus far of generative and creative AI 
in visual art, culinary, and protein engineering, but the applica-
tion domains are seemingly limitless. One can certainly think 
about developing AI to operate in either autonomous or semi-
autonomous mode with human interaction in developing solu-
tions for a broad set of application domains. Systems already 
exist for application areas that range from molecule design be-
yond proteins [21]; fragrance formulation design [22]; materi-
als discovery that yields sustainable building materials that are 
stronger, yet with much less embodied carbon than traditional 
formulations of concrete [23]; fashion designs that have been 
worn to the gala at the Metropolitan Museum of Art; artificial 
weather data generators that can be used to predict the impact 
of climate change [24]; musical compositions that have been 
performed on the world’s top stages [25]; and language includ-
ing narrative, poetry, computer programs, and news reports.

Drawing largely on the psychological study of creativity, sev-
eral ways of assessing creative AI technologies have emerged 
[26]. Notably, some evaluations are focused on the process of 
creativity, whereas other evaluations are focused on the product 
of creativity, such as ideas or artifacts. These two broad notions 
of how creative systems are evaluated also imply two broad 
notions of how creative systems should be explainable. Should 
the entire generative process be explained to people, or should 
only the final result of the generative process be explained?

In psychology, the definition of creativity also has at least 
two dimensions. An idea or artifact is said to be creative if it is 
judged to be novel and also appropriate, useful, or valuable by a 
knowledgeable social group. These two dimensions of creativity 
also clarify the distinction between generative AI and AI that is 
specifically creative. In particular, creative AI is a special case of 
generative AI where novelty is explicitly important. Many gen-
erative AI algorithms are interpolative rather than extrapolative 
in conceptual spaces, whereas creative algorithms are explicitly 
trying to extrapolate beyond their training (inspiration) set to 
yield ideas or artifacts that have never been imagined. For exam-
ple, a human face image generation system would typically be 
quite interpolative and try to match the statistical properties of 
natural face images in a training corpus, whereas a culinary cre-
ativity system might be quite extrapolative in combining ingre-
dients that have never been put together before. Explanations for 
interpolative and extrapolative AI can be quite different and can 
also be used to support the design of AI algorithms themselves 
as they move out of distribution while maintaining quality. 

For the novelty dimension, scholars often distinguish ex 
post measures, which make reference to events that happen 
after an artifact appears, such as citation counts or auction 
prices from ex ante measures, which refer only to events that 
led up to its debut, such as the complexity or surprise of an 

idea. In the context of explanation, ex ante approaches focus 
on the thing itself, whereas ex post approaches also consider 
the social embedding in a stronger way to explain how things 
might be perceived.

As we noted previously, there are several classes of genera-
tive and creative AI models. Here we discuss some of them.

A normalizing flow model is a transformation of a simple 
probability distribution (e.g., a standard Gaussian distribution, 
typically in high dimensions) into a more complex distribu-
tion by a sequence of invertible and differentiable mappings. 
Neural networks are usually trained to implement these map-
pings. Then, the probability density of a sample can be evalu-
ated by transforming it back to the original simple (Gaussian) 
distribution and then computing the product of the density of 
the inverse-transformed sample under this distribution and 
the associated change in volume induced by the sequence of 
inverse transformations, measured by determinants of Jacobi-
ans of the transformations. This leads to a generative algorithm 
by sampling from the normalizing flow model.

Rather than working directly with probability densities and 
their transformations as in normalizing flows, VAEs develop a 
latent-space representation of conceptual spaces mapped using 
an encoder and a decoder, which are usually trained neural 
networks. As a part of the generative process, the encoder is 
removed and random samples are taken in the latent space and 
then decoded back into the original space.

GANs approach the problem in a different manner, where two 
adversarial neural network models are paired: a generator and a 
discriminator. The training involves each trying to do as well as 
possible for their respective tasks. The generative part of the sys-
tem can then be used directly for generative processes. A particular 
form of GAN that is commonly used for generative applications 
is StyleGAN [27]. A style-based generator that has the ability to 
disentangle latent factors of variation into high-level attributes and 
stochastic features in the generated images in an unsupervised 
fashion is proposed. This enables an understandable, intuitive way 
to control the generative process at different scales.

Autoregressive models, such as Transformer neural net-
work architectures that underlie models such as GPT-3 and 
CTRL [28], have gained recent prominence, not just for natural 
language generation but also for images and numerous other 
modalities. The basic idea of training is language modeling, 
where the goal is to predict the next token given the previous 
context using self-supervision. Attention mechanisms are lever-
aged so as to ensure that only the most relevant parts of context 
are used for prediction. In using these models for generation, 
the basic idea is just to sequentially make predictions for the 
next token and then sample from the predicted probability dis-
tribution. All of these creative/generative approaches may be 
difficult to explain in detail, so there is a desire to develop new 
approaches, which we now describe through several vignettes.

Deep Generative Models and Creativity
Although there has been a rapid emergence of generative 
AI models, standard, deep generative models discourage out-
of-distribution generation to avoid instability. This minimizes 
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spurious sample generation but limits potential in creativity. 
Indeed, [29] shows that a complete removal of “spurious” sam-
ples limits the capacity of the generative model. Nevertheless, 
a number of works aim for novel, creative generation using 
deep generative models like VAEs or GANs, formulating the 
task as a few-/one-shot generation problem [30]–[32] or as a 
style-ambiguous design [33]. In aiming for novelty and util-
ity at the same time [7], an evaluation along both dimensions 
may be domain or subject dependent, labor extensive, and may 
also suffer from high levels of subjectivity. Therefore, new ap-
proaches that enhance the creative capacity of generative mod-
els, ensure a framework for systematic assessment of creativity 
by human experts, and provide model-, sample-, or task-level 
explanations of creativity need to be developed.

In the following, we present a recent case study aimed at 
developing a principled and label-free framework for enhanc-
ing the creativity of a pretrained deep generator [34]. Inspired 
by neuroimaging studies that show atypical neuronal activa-
tion in creative brains, a “creative” decoding algorithm is pro-
posed that generates novel and meaningful samples from the 
original latent (concept) space, as modeled by a generative neu-
ral network. Mimicking the neuronal activation pattern seen in 
creative brains, the algorithm favors atypical coactivation of 
high- and low-active neurons during decoding from the pre-
trained generative model. Specifically, starting with a sample, 

( ),z p z+  and corresponding neuronal activations for a select-
ed layer k of the decoder, denoted as ( ),d d zjz

k
j
k=  first, the set 

of active, on neurons and the set of inactive, off neurons are 
derived. During creative decoding, some fraction t  of a group 

of on and/or off neurons in a layer k is flipped either randomly 
or selectively. For instance, a neuron is selected from the pool 
of off neurons that have the lowest percentage of activations, 
a jk  (defined using a threshold cutoff). Next, low-active neurons 
that are most correlated with the selected neuron are also turned 
on. The method thus modifies ( ),d zjk  and this modified layer 
output is then passed through the remainder of the decoder to 
obtain the final generated samples. In a sense, creative decod-
ing allows conceptual leaps by pretrained neural networks 
without further training or access to additional feedback from a 
machine learning model or human expert. This exploration pro-
cess is congruent with the concept of exploratory creativity [7].

Figure 2 gives a high-level overview of the algorithm as well 
as some examples of decoded samples. A human assessment of 
creative decoding outcomes reveals that the proposed decoding 
method indeed results in samples consistent with human per-
ception of creativity. Importantly, the study evaluates novelty 
and creativity separately, revealing that the neuro-inspired 

Algorithm 1. Creative Decoding Using Low-Active Neuron Activation.
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FIGURE 2. (a) and (b) Depictions [(a): circle plots; (b): glass brains] of high- and low-creative networks in human brains with their highest-degree nodes. 
The circle plot colors correspond to brain lobes. Adapted from [35]. (c) The depiction of a VAE model with our neuroinspired creative decoder. Normally, 
a small fraction of neurons in each hidden layer are low active (dark color). Inspired by the neural basis of creativity, we activate those “low-active” (task-
negative) neurons to induce coupling between task-positive and task-negative neurons during “creative” decoding. (d) and (e) The samples generated by 
the proposed creative decoding method. The base generative models used were ARTGAN trained on (d) the WikiART data set and VAE trained on (e) the 
CelebA data set. Adapted from [34]. L: left hemisphere; R: right hemisphere.



IE
EE P

ro
of

6 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2022   |

decoding method is essential to generate a higher proportion of 
creative samples. Baselines such as decoding from linear inter-
polations in the latent space or activation of randomly selected 
off neurons during decoding fail to achieve this high level of 
creativity. Moreover, comparing human assessment with out-
of-class novelty values (obtained using surrogate machine 
learning models) of generated samples shows that a linear 
combination of individual surrogate metrics (e.g., a trained L -1
regularized logistic regressor model) capture the human per-
ception of creativity to a significant extent.

Explaining AI Generations
With AI models becoming more complex and therefore in-
creasingly inscrutable, there is growing demand for interpre-
table or XAI models. This is particularly the case in scientific 
decision making and accelerating scientific discovery, where 
AI is seeing significant application. Generating explanations 
for black-box AI models is important, but assessing those ex-
planations is challenging. For instance, it is not well defined 
how one should accurately account for the subjective variabil-
ity in user perception of AI explanations. Further, user percep-
tion can vary with the type of explanations provided.

Posthoc techniques (including visualizations) have been 
developed to interpret the outputs of deep learning-based gen-
erative models and have been broadly applied to a variety of 
input modalities including images, natural and other domain-
specific languages, and tabular data. Here we discuss a number 
of examples where posthoc explanations were studied for inter-
preting the outputs of deep learning-based generative models 
of biological sequences that include recurrent neural networks 
(RNNs), transformers, and generative autoencoders. Figure 3 
shows the table generated by a visual analytic platform known 
as the Peptide Sampler (https://peptide-walk.mybluemix.net), 
which provides a visualization of decoded sequences and their 
attributes sampled from the latent space of biological peptides 
modeled by an RNN-based Wasserstein autoencoder (WAE) 
[3], [36]. In this specific screenshot, the platform illustrates the 

decoded sequences and their attributes during a linear interpo-
lation between two known and distant antimicrobial peptide 
sequences in the WAE latent space. The gray box indicates a 
sampling of novel sequences with low sequence similarity to 
the endpoint sequences. Those novel sequences are of interest 
as they show high-antimicrobial class probability and low-tox-
ic class probability as returned by property predictor models 
trained on the WAE latent embeddings of known peptides. A 
sequence alignment to the previous row (blue: amino acid addi-
tion, violet: amino acid swapped, red: amino acid removed) 
as well as different attribute changes along the interpolation 
provides a visual explanation of how peptide sequences are 
mapped in the WAE latent space.

In recent years, attention mechanisms have played a major 
role in natural language and other domain-specific language 
modeling and generation. Consequently, intermediate repre-
sentations offered by these modules are being investigated for 
the purpose of explaining the reasoning for a model’s behavior. 
For instance, recently, a 3D visualization of the attention of 
a Transformer protein sequence model has revealed an accu-
rate capture of protein structural and binding properties [37], 
as shown in Figure 4(a). Similarly, a mapping of the atten-
tion differences learned by a long short-term memory protein 
sequence zoonotic potential classifier on the beta-coronavirus 
RNA-dependent RNA polymerase structure highlights a pro-
tein–protein interaction interface that is known to govern viral 
replication [Figure 4(b) and (c)] [38]. These visualizations are 
examples of displaying so-called BERTology analyses [39], 
which try to delve into what information/knowledge is present 
in Transformer-type neural architectures after training.

Connecting AI Explanations and AI Creativity
Explaining the generated artifacts or the model itself of a gen-
erative AI framework has more challenges than the typical XAI 
paradigm for explaining predictive models. Notably, the data 
distribution shift among training samples and novel generated 
artifacts is often what makes explanations more difficult. In that 

FIGURE 3. The Peptide Sampler visual analytic platform shows decoded sequences and their attributes during a linear interpolation between two selected 
sequences in the latent space of a generative autoencoder (a WAE in this example) trained on biological peptides. 
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direction, [40] employs an anomalous pattern-detection meth-
od referred to as group-based subset scanning to determine 
whether a given batch of generated samples contains creative 
samples, as determined by a human evaluator. Now we provide 
a short summary of how subset scanning treats the creative 
quantification and characterization problem as a search for the 
most anomalous subset of observations in the data.

Consider a set of samples from the latent space X = 
X XM1f" , and nodes O O OJ1f= " , within the creative 

decoder. Let X XS 3  and .O OS 3  The subsets S under con-
sideration are defined as .S X OS S#=  The goal is to find the 
most anomalous subset:

	 ( ).argmaxS F S
S

=) � (1)

A nonparametric scan statistic such as the Berk–Jones 
test statistic is then used on the p values that compare the 
node activations between the background (regular decoding) 
and evaluation (creative decoding). An important finding 
from this analysis is that creative generation requires a larger 
extent of distinctly anomalous node activation, as depicted in 
Figure 5. Thus, the anomalous pattern-detection framework 
provides explanations for creative artifacts, which is based 
on node activations of the trained models. Such explanation 
frameworks can provide guidance to generative AI models 
for promoting creative generation [41] and chart the path 
toward human–AI cocreation.

Model-Agnostic Posthoc Interpretation
Thus far, we have discussed explainability methods that make 
use of AI models themselves. One can, however, also perform 
a model-agnostic posthoc interpretation of creative artifacts 

without considering how they were produced. Some tech-
niques use knowledge graph-based interpretation; here we 
describe an example using combinatorial structures within 
knowledge graphs or embedding spaces for explaining com-
binatorial creativity.

Combinatorial and compositional creativity—the genera-
tion of unfamiliar combinations of familiar ideas—is the typi-
cal kind of creativity performed by people and also pursued by 
computational creativity systems, whether implicitly or through 
the explicit combining of parts. Even exceptional levels of cre-
ativity have a combinatorial character. Several algorithmic 
techniques now perform combinatorial creativity for different 
application areas, including language modeling for language, 
simulated annealing for magic tricks, stochastic sampling + fil-
tering as well as associative algorithms and language modeling 
for culinary recipes, neural network approaches for music and 
for building materials, and case-based reasoning for engineer-
ing processes. Although products of such creativity are readily 
interpretable by people in knowing what they are, the process 
of such creativity may be inscrutable and nonintuitive (in the 
sense of [8]). Yet, users of computational creativity technolo-
gies already anthropomorphize them.

For human understanding, an explanatory process is often 
just as important as the product; indeed, people want to under-
stand the “theory of mind” of creators. This is especially the 
case when considering social creativity; understanding others 
is the most pervasive aspect of successful social interaction. In 
human-only creativity, the benefits of social interaction for cre-
ativity are well known. In this vignette, we describe an inverse 
problem formulation of going from a combinatorial artifact 
back to the human-like process that may have created it (even if 
not the underlying algorithm that actually created it) [42].

(a) (b) (c)

FIGURE 4. (a) An example of how specialized attention heads in a transformer recover protein structure and function, based solely on language model 
pretraining. The orange lines depict attention among amino acids. This is specifically an attention head that targets amino acid pairs that are close in 
physical space (see inset subsequence 117 D-157I) but lie apart in the sequence, which is shown for a de-novo-designed triose-phosphate isomerase-
barrel (5BVL) with characteristic symmetry (adapted from [37]). (b) The average attention differences between two classes, as learned by a sequence-
based zonnotic potential classifier model (adapted from [38]), mapped onto the severe acute respiratory syndrome-associated coronavirus nonstructural 
protein (nsp)12 structure (6NUR.pdbchain A residue 146–714). A red-gray-blue (low-to-high) color scale is used to visualize the attention heatmap. 
(c) The regions of RNA-dependent RNA polymerase interacting (cutoff: 6.5 Å) with nsp7 highlighted in magenta (adapted from [38]). This highlights that 
higher attentions within the positive sequences map to the N-terminal structural regions, which correspond to the nsp12-nsp7 interaction surface.
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Longstanding results in the behavioral sciences show 
that the way humans think, recall, and process information 
is largely through associations: an association is the connec-
tion between two or more concepts. Human creativity is often 
described as the mental process of combining associative ele-
ments into a new form. Indeed, creative processes are often 
thought of as forming associative elements into new combina-
tions that either meet specified requirements or are in some 
way useful. Although remote associations are often indicators 
of creativity, more nearby associations are easier for people to 
understand and appreciate. Given that the human creative pro-
cess is largely by association, one may specifically consider 
explanations using associative chains.

To find associative chains that use nearby associations, one 
can develop a traveling salesperson problem (TSP) formulation 
within knowledge graphs, where the nodes are components and 
edges are associations. Tours, paths, and other combinatorial 
structures within knowledge graphs are then possible explana-
tions. This is the inverse problem to associative algorithms for 
computational creativity itself. In this sense, explanation is the 
opposite process of creativity (under a specific algorithm).

Figure 6 presents the following three examples of such 
explanations:

1)	 The culinary recipe of a new spice mixture that can be used 
for pastries: thyme, clove, tangerine peel oil, French laven-
der, and lavender flower.

2)	 An English sentence: “After hearing the music, I woke up 
in the morning and opened my eyes, after which I had 
breakfast at the kitchen table.”

3)	 A Hindi sentence that translates to “The old Indian government 
was the cause of other international governments unraveling.”

The first two examples have explicit knowledge graphs that can 
be used (flavor networks and ConceptNet, respectively), where-
as the third example is for a less-resourced setting. A Euclidean 
word embedding is used as an implicit knowledge graph.

Note that in each of these examples, we are considering a 
semantic notion of novelty based on explicit or implicit knowl-
edge graphs, rather than a statistical notion of novelty. This can 
be formalized as follows.

Definition 1
Consider a creative artifact a comprising components , ,x xn1 f" , 
that has a corresponding subgraph, G,u  of knowledge graph K. 
Then the TSP-novelty of ,a  ( ),sK a  is defined to be G ,TSP u^ h  
where ( )TSP $  is an operator for finding the traveling salesper-
son path length.
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FIGURE 6. Examples of explanations via traveling salesperson tours. (a) Explaining a novel spice mixture based on the number of shared flavor com-
pounds (more is a stronger association), where two Hamiltonian paths are highlighted in purple and brown; and an unused edge is in green. (b) Explain-
ing a novel English sentence, where a knowledge graph is denoted by blue nodes and corresponding edges among them, computed using ConceptNet 
(ignoring directionality, larger values are stronger associations). The gray nodes could have been used for augmentation if needed. The path highlighted 
in green is a traveling salesperson path. (c) Explaining a novel Hindi sentence, computed using a pretrained word embedding in a 2D principal compo-
nent analysis basis. As this is a fully connected graph, we omit the unused edges in the traveling salesperson path.
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Considering the Euclidean setting, suppose a computational 
creativity algorithm selects components at random, as in sto-
chastic sampling algorithms that, in principle, encompass all 
other kinds of computational creativity algorithms. Then we 
have the following celebrated result in computational geometry 
for the Euclidean TSP problem.

Theorem 1
Let , ,X Xn1 f" , be a set of independent identically distrib-
uted (i.i.d.) random variables in Rd  with bounded support. 
Then the length Ln  of the shortest TSP tour through the 
points Xi" , satisfies

( )
n
L f x dx( )/

( )/
d d
n

d
d d

1
1

Rd
" b-

-#

with probability 1 as ,n "3  where f(x) is the absolute continu-
ous part of the distribution of the ,Xi" ,  and db  is a constant 
that depends on d but not on f(x). 

The intuition from this concentration of measurement theo-
rem is that, asymptotically, the choice of stochastic sampling dis-
tribution f(x) in the creativity algorithm can directly control the 
traveling salesperson tour length in a given d-dimensional con-
ceptual space. Concentrated distributions yield much less novelty 
than those that are disperse, and this is explicitly computable.

Moreover, note that the TSP tour length Ln  is asymptoti-
cally, intimately tied to the Renyi entropy ( ( ))H f xc  of the sam-
pling distribution, where for ( , ),0 1!c

( ) ( ) ( )lnH f f x z dz
1
1
c

=
-c

c#

and approaches the Shannon entropy as .1"c

Theorem 2
Let , ,X Xn1 f" , be a set of i.i.d. random variables in Rd  with 
bounded support. Let Ln  be the length of the shortest TSP tour 
through the points .Xi" ,  Then the following estimator for the 
Renyi entropy

( ) ,ln ln
n
LH X

1
1 n

c
b=

-
-c c

t c m

where ( ) /d d1c = -  and b  is a fixed constant independent 
of f(x), is an asymptotically unbiased and almost surely con-
sistent estimator of the Renyi entropy of f(x). That is to say, 
the TSP tour length is asymptotically a simple function of the 
Renyi entropy of the stochastic sampling distribution, which 
approaches the Shannon entropy in high dimensions.

This matches with statistical measures of novelty that are 
also simple functions of information-theoretic quantities such 
as Shannon entropy and mutual information; however, here, 
they are from a measure of novelty that emerges directly from 
explaining creative artifacts via associative chains.

Thus we see that creativity algorithms can be designed 
directly using a measurement that emerges from explainability. 

Various generative algorithms, such as normalizing flows and 
VAEs, can be thought of as stochastic sampling.

Intrinsically Interpretable Generation
Thus far, we have discussed the processes by which specific 
creative algorithms work and also the outputs of creative al-
gorithms in a model-agnostic way via associative chains. Both 
have led to specific design principles for creative AI algorithms 
and also methods for human–AI interaction. Now we consider 
an alternative where both the processes and products of cre-
ativity are intrinsically interpretable. This vignette focuses on 
a nonneural network technique called ILL [19], [43], which 
draws upon mathematical techniques from both information 
and group theory.

ILL is a general framework used to learn rules of a signal 
(e.g., an image or a probability distribution). Here a rule is a 
coarsened signal used to help people gain one interpretable 
insight about the original signal. To make full sense of what 
might govern the signal’s intrinsic structure, multiple disentan-
gled rules arranged in a hierarchy, called a lattice, are sought. 
Compared to representation/rule-learning models optimized 
for a specific task like classification, ILL focuses on explain-
ability: it is designed to mimic human experiential learning 
and discover rules akin to those humans distill and can appre-
hend. Thus, ILL addresses the fundamental question “what 
makes X an X” by creating rule-based explanations designed 
to help humans understand. By having a human-interpretable 
way of explaining X, one can then also sample from the space, 
e.g., in a maximum-entropy manner, while satisfying rules that 
are themselves interpretable.

The mathematical intuition behind ILL is to break the 
whole into simple pieces, similar to breaking a signal into a 
Fourier series. Whereas a Fourier analysis decomposes a sig-
nal in a Hilbert space via an inner product and synthesizes it 
via a weighted sum, ILL decomposes a signal in a hierarchical 
space called a lattice. The goal is to restore human-like, hier-
archical rule abstraction and realization via signal decompo-
sition and synthesis in a lattice, called projection and lifting, 
resulting in more than the sum of its parts.

ILL has two phases: lattice construction and learning/
searching in the lattice. This is similar to many machine learn-
ing models, such as normalizing flows or VAEs comprising 
function class construction then learning in the function class, 
e.g., by constructing a neural network architecture then learn-
ing/finding optimal network parameters via backpropagation. 
ILL’s construction phase builds on universal priors consistent 
with human innate cognition, such as a knowledge of symme-
tries (group-theoretic invariances) that are readily understand-
able, which then grows a lattice of abstractions. ILL’s learning 
phase operates on “small data” as a signal but searches for rich 
explanations of the signal via rule learning, wherein abstrac-
tion is key to “making small data large.” Notably, the construc-
tion phase is prior, not data driven—data comes in only at the 
learning phase.

ILL has been demonstrated to recover 80% of the University 
of Illinois Urbana-Champaign’s music theory curriculum and 



IE
EE P

ro
of

11IEEE SIGNAL PROCESSING MAGAZINE   |   July 2022   |

to discover powerful new concepts of interest to music theorists 
on the basis of just 370 chorales by Bach in the same human-
interpretable form as textbooks [19]. Given its intrinsic interpret-
ability, ILL also supports new modes of human–AI creativity, 
where music can be decomposed into fragments that corre-
sponds to harmony, melody, rhythm, texture, and so on and then 
recomposed in a way that yields a high-quality result, even when 
human participants are not well versed in music theory.

Conclusions
Computational creativity dates back at least to the 1956 Dart-
mouth meeting that established AI as a research discipline. In 
this article, we argued that it is important for explainability in 
AI to not just be considered for decisions and predictions but 
also for generative and creative algorithms as well. We spe-
cifically discussed the intrinsic interpretability and posthoc 
explainability (both model focused and model agnostic) of AI 
generations/generative models via several vignettes. Notably, 
such results provide a virtuous interaction among advances 
in creative AI, XAI, and human–AI interaction for advancing 
and understanding creativity. The research we presented in this 
article also suggests open research questions, such as on hybrid 
approaches that combine intrinsic and posthoc interpretability.

Beyond human interpretability, explainability is also said to 
require reproducibility and replicability. Although this holds 
directly in settings of AI-based decisions and predictions, there 
is some subtlety to this point in generative/creative settings. 
Indeed, the purpose of creativity is to generate ideas or arti-
facts that have never been imagined before, and each run of 
the algorithm is intended to produce novel ideas or artifacts 
(often influenced by the specific prompt, seed, or condition-
ing variable given, but also various sources of randomness). 
As such, it is important to characterize the sources of random-
ness in various generative algorithms and how they work. In 
normalizing flows, randomness is a part of sampling from the 
simple (Gaussian) distribution, whereas for VAEs and GANs, 
there is randomness in sampling from the latent space. In lan-
guage models, there can be randomness in the various neural 
decoding algorithms that are used on top of the trained models. 
In ILL, again, there can be randomness in maximum-entropy 
sampling from within valid rule sets. Moreover, the prov-
enance of data that is used for training neural network-based 
generative algorithms or for inspiring other kinds of generative 
algorithms is of critical importance, whether in the governance 
of AI safety, or in questions that arise in intellectual property 
law and free speech law. Self-awareness and self-evaluation 
are also highly relevant as creative AI algorithms should know 
“when to stop” [44]—as a path toward gaining some low-level 
autonomy. The recent advances in steerable or controllable 
generative models [3] are highly relevant in this context as they 
not only can allow control over those AI frameworks but can 
also aid in bridging explanations with creations.

Finally, we note that discussions of interpretable AI, espe-
cially in settings of decisions/predictions, often start with the 
misconception that there is a fundamental tradeoff between 
interpretability and accuracy, but numerous examples show the 

contrary. In the context of generative algorithms, our vignettes 
demonstrated that not only is there no tradeoff between under-
standing and novelty/quality of results, but in fact, ensuring 
interpretability/explainability can even enhance performance 
on creativity metrics.
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Generating explanations 
for black-box AI models is 
important, but assessing 
those explanations is 
challenging.

Various generative 
algorithms, such as 
normalizing flows and 
VAEs, can be thought of 
as stochastic sampling.

Creative AI is a special 
case of generative AI 
where novelty is explicitly 
important.

If an AI system can be 
explained, its intention 
becomes much more clear.

For human understanding, 
an explanatory process 
is often just as important 
as the product; indeed, 
people want to understand 
the “theory of mind” of 
creators.

ILL’s learning phase 
operates on “small data” 
as a signal but searches 
for rich explanations 
of the signal via rule 
learning, wherein 
abstraction is key to 
“making small data large.”


