10} {Pairwise Independence) Xy, Xa, ..., X,—1 are 1.i.d. Bemoulli(1/2) random wvariables. We will first prove that

for any k£ < n — 1, the probability that ELl X; is odd 1s 1/2. We will prove this by induction. Clearly this

is true for k& = 1. Assume that it is true for &k — 1. Let 5, = E:-‘;IX,-_ Then

P(S; odd) = P(S;-1 odd)P({X; =0)+ P(Si_1 even)P(X; = 1) (257)
S n
N % (259)
Hence for all & < n — 1, the probability that S is odd 1s equal to the probability that it is even. Hence,
PX,=1)=PX,=0) = % (260)

a) It is clear that when i and j are both less than n, X; and X; are independent. The only possible problem
is when j = n. Taking ¢ = 1 without loss of generality,

n—1
P(X1=1,X,=1) = P(X;1=1, X, even) (261)
i=2
n—1
= P(Xi =1)P(}_ X; even) (262)
i=2
11
= 33 (263)
= P(X; =1)P(X. =1) (264)

and similarly for other possible values of the pair (X, X,,). Hence X; and X, are independent.
b) Since X; and X; are independent and uniformly distributed on {0, 1},

H(X;, X;)=H(X;)+ H(X;)=1+1=2bits. (265)
c) By the chain rule and the independence of X, X, ..., X,.,. we have
H(Xy, Xp,...,X,) = H(Xy, Xy, Xy ) + HX, X, X)) (266)
n—1
= ZH(X,-) +0 (267)
i=l
= n—1, (268)

since X, 1s a function of the previous X;"s. The total entropy is not n, which i1s what would be obtained
if the X;'s were all independent. This example illustrates that pairwise independence does not imply
complete independence.



14) The key point is that functions of a random variable have lower entropy. Since (¥7.¥5,....Y,) 15 a function
of (X, Xa... ., X.:) (each ¥; 1s a function of the corresponding X;), we have (from Problem 2.4)

Hh.Ya...., Ya) = H(X1, Xa, ... Xn) (275)

Dividing by n, and taking the limit as n — oo, we have
H(Y,,Y,,.... V)

limm < lim (276)
ar
HY) = HI(X) (277)
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27 Test for unigue decodability.
The proof of the Sardinas-Patterson test has two parts. In the first part, we will show that if there is a code
string that has two different interpretations, then the code will fail the test. The simplest case is when the
concatenation of two codewords yields another codeword. In this case, S» will contain a codeword, and hence
the test will fail.
In general, the code is not uniquely decodeable, iff there exists a string that admits two different parsings
into codewords, e.g.

IyEgdglyTylglyly = I1lg, Iglydy, Lglyly = Tplalgdy, Ilglylyg. (414)

In this case, S, will contain the string xqx, S5 will contain x5, S; will contain xgxraxg, which is a codeword.
It is easy to see that this procedure will work for any string that has two different parsings into codewords;
a formal proof is slightly more difficult and using induction.

In the second part, we will show that if there is a codeword in one of the sets 5;,¢ > 2, then there exists
a string with two different possible interpretations, thus showing that the code is not uniquely decodeable.
To do this, we essentially reverse the construction of the sets. We will not go into the details - the reader is
referred to the original paper.

a) Let 5; be the original set of codewords. We construct 5;4; from 5; as follows: A string y is in 5;. iff
there is a codeword = in S|, such that xy is in 5; or if there exists a = £ 5; such that zy is in 5] (i.e,
is a codeword). Then the code is uniquely decodable iff none of the S;, ¢ > 2 contains a codeword.
Thus the set § = U.i:__\zac;j.

b) A simple upper bound can be obtained from the fact that all strings in the sets S; have length less than
Lnar. and therefore the maximum number of elements in S is less than 2'=e=.

¢) i) {0.10,11}. This code is instantaneous and hence uniquely decodable.

ii) {0,01,11}. This code is a suffix code (see problem 11). It is therefore uniquely decodable. The sets
in the Sardinas-Patterson test are 5; = {0,01,11}, Sy = {1} = S; = S; = ....

iii) {0,01,10}. This code is not uniquely decodable. The sets in the test are 5, = {0,01,10}, S = {1},
83 = {l]}, ... Since 0 is codeword, this code fails the test. It is easy to see otherwise that the code
is not UD - the string 010 has two valid parsings.

iv) {0.01}. This code is a suffix code and is therefore UD. THe test produces sets S, = {0.01},
S = {1}, S3 = ¢.

v) {00,01,10,11}. This code is instantaneous and therefore UD.

vi) {110.11,10}. This code is uniquely decodable, by the Sardinas-Patterson test, since 5; = {110, 11, 10},
Sg = {l]}, Sq = .

vii) {110,11,100,00,10}. This code is UD, because by the Sardinas Patterson test, 5; = {110, 11, 100, 00, 10},
S = {ﬂ}, 53 = {ﬂ}, efc.

d) We can produce infinite strings which can be decoded in two ways only for examples where the Sardinas
Patterson test produces a repeating set. For example, in part (ii), the siring 011111... could be parsed
either as 0,11,11,... or as O1,11,11,... Similarly for (viii), the string 10000... could be parsed as
100,00.00.... or as 10,00,00,._.. For the instantaneous codes, it is not possible to construct such a
siring, since we can decode as soon as we see a codeword string, and there is no way that we would
need to wait to decode.



4) Channel capacity.

Y =X + Z(mod 11) (594)
where
1 with probabilityl/3
Z = ¢ 2 with probabilityl/3 (595)
3 with probabilityl/3
In this case,

H(Y|X) = H(Z|X) = H(Z) = log 3, (596)

independent of the distribution of X, and hence the capacity of the channel is

O = II}:E'-DC I(X:Y) (597)
plz)

= Ilta‘ﬂc H(Y)-H(Y|X) (598)
plz)

= maxH(Y)—log3d (599)
plz)

= logll —log3d, (600)

which 15 attained when Y has a uniform distribution, which occurs (by symmetry) when X has a uniform
distribution.

a) The capacity of the channel is L::g bits/transmission.

b) The capacity 1s achieved by an umfnrm distribution on the inputs. p(X = i) = 11 fori=0.1...., 10.



11y Time-varving channels.

We can use the same chain of inequalities as in the proof of the converse to the channel coding theorem.

Hence

I{Xn: Yﬂ} — H{Yﬂ} . H{Ynlxn]l

i

= H(Y")-) H(Yi%.... YL X")
iz]

= H(Y") =) H(Y|X),
i=1

(615)

(616)

(617)

since by the definition of the channel, ¥; depends only on X; and is conditionally independent of everything

else. Continuing the series of inequalities, we have

I(X™Y") = H{Y"}l—iH{}’leﬂ
i=1

14

Y H(Y:) - H(Yi|X;)
i=1 i=l

< ) (1—h(p)).
i=1

with equality if X, Xs..... X, 15 chosen 1.1.d. ~ Bemn(1/2). Hence

max I{Xy, Xo, ..., X0 Y1, Yo, ... Y, ) = Zl[l — hip;)).

plx)

(618)

(619)

(620)

(621)
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