
Optimal Prediction of the 
Number of Unseen Species
Orlitsky, Alon, Ananda Theertha Suresh, and Yihong Wu. "Optimal prediction of the number of unseen 

species." Proceedings of the National Academy of Sciences 113.47 (2016): 13283-13288.

Presenter: Jason Vega
Wednesday, December 11, 2024



Overview

1. Background
2. Proposed Estimator
3. Theory



Background



Unseen Species Problem

Frequency 1 2 3 4 5 … 14 15

Species 118 74 44 24 29 … 12 6

Data from 1 year of trapping butterflies

Problem: How many new species from another year of trapping? 

e.g., for 118 species, only 1 specimen was captured!

Year 2
New Species

Year 1
Seen Species

Year 2
Seen Species



Unseen Species Problem

Year 1: n i.i.d. samples

Year 2: m i.i.d. samples

Year 1 unique species:

Year 2 unique species:

Year 2 new species:



Prior Work: Good-Toulmin Estimator

Frequency 1 2 3 4 5 … 14 15

Species 118 74 44 24 29 … 12 6

Φi: # of species w/ freq. i (“prevalence of i”)

Φ1 Φ2 Φ3 Φ4 Φ5 Φ14 Φ15

Good-Toulmin Estimator:

Let t = m/n (yr. 2 to yr 1. sample size ratio)

e.g., for table data w/ t=1, UGT = 118 - 74 + 44 - 24 + … - 12 + 6 = 75 



Given sample X, want to estimate some quantity Y. 

Estimator:

Background: Bias, Variance and MSE

Note that Variance ≤ MSE

Bias:

       MSE:

      Variance: (Def. used in this paper)

Ideally: low bias and variance!



● For t ≤ 1:
○ Bias: nearly unbiased!
○ MSE: O(nt2)

● For t > 1: high variance!

Good-Toulmin Performance

For t > 1, |(-t)i| explodes as i grows!

As t → ∞, UGT dominated by (-t)iΦi for 
largest i s.t. Φi > 0

Example for a Zipf distribution

Problem: How to reduce variance for t > 1? 



Prior Work: Efron-Thisted Estimator

Intuition: Counteract exploding (-t)i with something that decays with i!

Efron-Thisted Estimator:

Tail probability of Binomial distribution

● Derived by truncating Euler transform of UGT after k terms… complicated!
○ Later: UET derived easily through a probabilistic interpretation!

● Performance: Good empirical performance!
● Problem: No theoretical guarantees… (until Orlitsky et al., 2016!)



Proposed Estimator



Initial Attempt: Truncated Good-Toulmin Estimator

● What if we did something even simpler than UET?
● Idea: Since high variance due to (-t)iΦi for large i, truncate UGT after ℓ terms

Truncated Good-Toulmin Estimator:

● Problem: for t > 1, in the worst case, bias is still large! (will show later)



Smoothed Good-Toulmin Estimator

● Uℓ may have positive or negative bias, depending on sign of dominant (-t)iΦi:

● Idea: Average over many Uℓ so that biases “cancel” out!

Smoothed Good-Toulmin Estimator:

● The smoothing distribution of L can control the MSE behavior!



Probabilistic Interpretation of Efron-Thisted

Efron-Thisted is UL with 

Efron-Thisted: 

Smoothed Good-Toulmin:



Experimental Results (Synthetic Data)

Black = True value
Green = SGT
Others = Other baselines

A-F denote various 
synthetic distributions 
(e.g. uniform, Zipf)

Estimate of U

t



Experimental Results: Support Size Estimation (Real Data)

Black = True value
Green = SGT
Others = Other baselines

A-D denote various real 
data distributions (e.g. 
Shakespearean 
vocabulary, last names 
from Census data)

Estimated 
Support Size

Fraction of seen data
Est. Support Size = (# already seen species) + (UE for m = # remaining data)



Theory



Evaluation Metric

Note: given n and t, U is at most m = nt

Worst-Case Normalized MSE 
of Estimator UE:

Recall that Variance ≤ MSE



Theorem 1: Performance of SGT

● Principled method of selecting k for Efron-Thisted with performance guarantees
● Slight modification to q beats original UET

O(

O(

O(

)

)

)

UET

Best!

for t > 1: -log3(1+2/t) ≤ -log2(1+1/t) ≤ -1/t

for t ≥ 1



Theorem 2: Best-Case Performance

∃c’ s.t. for any n and any estimator UE,

O(

O(

O(

)

)

)

SGT estimators are 
near-optimal!



Corollary 1: Limits of Prediction Accuracy

∀δ > 0,

At best, an estimator will be accurate for new sample 
sizes up to m∝n*log(n)



Corollary 1: Limits of Prediction Accuracy

Paper claims SGT achieves corollary 1 limit

Rough idea to support claim (note: some abuse of notation)

(from Theorem 1)



Analysis of Linear Estimators
● All estimators shown so far are linear
● Consider an arbitrary linear estimator:

● Note that the series hi can form the derivatives at 0 for some function h 
through the Taylor expansion: 

(assuming h(0) = 0)



Analysis of Linear Estimators (Lemma 1)

● Let px be probability of observing species x, and let λx = npx. The bias is then:

● And the variance satisfies:

● We can thus reinterpret constructing a linear estimator as function 
approximation of g(y) = 1-e-ty

Want small derivatives at 0

Want to approximate 
g well at points {λx}



Analysis of Good-Toulmin

● Recall Good-Toulmin estimator:

● Note that its {hi} are the derivatives at 0 for h(y) = 1-e-ty = g(y)!
○ For h(y) = 1-e-ty, the ith derivative is -(-t)ie-ty, so the derivatives at 0 are -(-t)i

● According to Lemma 1, this means that Good-Toulmin is unbiased
● However, for t > 1, |-(-t)i| → ∞ as i → ∞, so the variance can explode!

Lemma 1:



Analysis of Truncated Good-Toulmin

● Recall Truncated Good-Toulmin estimator:

● Note that its {hi} are the derivatives at 0 for the ℓth 
degree Taylor expansion of g(y)

● Now we are guaranteed finite variance!
● Approximation quality degrades for y far from 0 => 

large bias

Lemma 1:

ℓth deg. Taylor expansion



Analysis of Smoothed Good-Toulmin

● Recall Smoothed Good-Toulmin estimator:

● Clearly, its {hi} are weighted averages of the derivatives at 0 for 
Taylor expansions of g(y) over all possible degrees

● Averaging over Taylor expansions gives overall better 
approximation of g(y) => bias can be reduced

● Finite variance possible for specific smoothing distributions

Lemma 1:

Avg. of 10th and 11th deg. 
Taylor expansion



Proof Sketch of Theorem 1 (Poisson)

First, the following is proved (Theorem 3): 

O( )

for t ≥ 1

where



Proof Sketch of Theorem 1 (Poisson)

For Poisson distribution with parameter r,  

O( )

for t ≥ 1

Bessel function, which has values in [-1, 1]

Substituting into Theorem 3 and optimizing over r yields the Theorem 1 bound.



Conclusion

● Unseen species problem: Estimates # unseen species in future sample 
given past data 

● Prior work:
○ Good-Toulmin estimator works well for t ≤ 1, but has large variance for t > 1
○ Efron-Thisted estimator empirically worked well for t > 1, but had no theoretical support

● Smoothed Good-Toulmin estimator proposed
○ Generalizes Efron-Thisted
○ Principled selection of parameters
○ Worst-case MSE performance guarantees 

● Bias and variance of linear estimators can be analyzed via their Taylor 
expansions; used to show why truncated Good-Toulmin has high bias


