Spatially Coupled LDPC Codes Constructed From Protographs

Mitchell, D. G., Lentmaier, M., & Costello, D. J. (2015). Spatially coupled LDPC codes constructed from protographs. *IEEE Transactions on Information Theory*, *61*(9), 4866-4889.

Presenters: Yuan-Pon Chen, June Hou, Yun-Han Li

Preliminaries

• BP threshold of SC-LDPC

Minimum distance of SC-LDPC

Numerical results

Outline

Preliminaries

Regular/irregular LDPC codes

- Message passing and BP threshold
- Protograph, lifting and edge spreading

Bipartite graph represents parity-check equations

LDPC code—Tanner graph

(j, k)-regular LDPC code

Each variable node has the same degree, and each check nodes has the same degree *j*: degree of variable nodes k: degree of check nodes

Example

(2,4)-LDPC code

$$c_{1}: v_{1} + v_{2} + v_{7} + v_{8} = 0$$

$$c_{2}: v_{1} + v_{2} + v_{3} + v_{4} = 0$$

$$c_{3}: v_{3} + v_{4} + v_{5} + v_{6} = 0$$

$$c_{4}: v_{5} + v_{6} + v_{7} + v_{8} = 0$$

LDPC code—Tanner graph

Bipartite graph represents parity-check equations

irregular LDPC code

Defined by degree distribution functions

$$x) = \sum_{i=1}^{d_{v}} \lambda_{i} x^{i-1} \quad \rho(x) = \sum_{i=2}^{d_{c}} \rho_{i} x^{i-1}$$

 $d_v(d_c)$: max degree of variable(check) nodes $\lambda_i(\rho_i)$: fraction of edges connected to variable(check) nodes of degree *i*

$$f(x) = \frac{1}{3} + \frac{2}{3}x \quad \rho(x) = \frac{1}{6}x + \frac{1}{2}x^2 + \frac{1}{3}x^3$$

LDPC code—Design rate

Given a Tanner graph of the LDPC code, the design rate is defined as $R = 1 - \frac{\#(\text{check nodes})}{\#(\text{variable nodes})}$

For a (j, k)-regular LDPC code, R = 1 - 1

For an irregular LDPC code with degree distribution (λ, ρ) ,

$$R = 1 - \frac{\sum_{j} \frac{\rho_{j}}{j}}{\sum_{k} \frac{\rho_{k}}{k}} = 1 - \frac{\int_{0}^{1} \rho(x) dx}{\int_{0}^{1} \lambda(x) dx}$$

$$\frac{j}{k}$$

Variable to check message

Aggregate information from all *other* check nodes

• All other incoming messages are *, send *

Variable to check message

Aggregate information from all *other* check nodes

All other incoming messages are *, send *

• Any other incoming messages is $b \in \{0,1\}$, send b. If $u_0 = *$, set $u_0 = b$.

Variable to check message

Aggregate information from all *other* check nodes

All other incoming messages are *, send *

• Any other incoming messages is $b \in \{0,1\}$, send b. If $u_0 = *$, set $u_0 = b$.

Check to variable message

Aggregate information from all *other* variable nodes

Any other incoming messages are *, send *

Check to variable message

- Aggregate information from all *other* variable nodes
- Any other incoming messages are *, send *

• All other incoming messages are 0 or 1, send XOR of all other incoming messages

BP threshold—density evolution BEC as example

Finding the largest erasure probability ε^* (threshold) such that using a BEC with erasure probably $\varepsilon < \varepsilon^*$, we can reliably transmit the LDPC code with (λ, ρ) -Tanner graph for large enough block length.

BP threshold—density evolution BEC as example

Assume cycle-free, so the messages are independent $p_{\ell} := \Pr\{v = * \text{ at round } \ell\}, p_0 = \varepsilon \text{ the erasure probability}$ <Remark> Recall that v denotes a variable-to-check message. Density evolution gives a recursion expression of p_{ℓ} in terms of $p_{\ell-1}$ The **threshold** ε^* is defined as the largest erasure probability such that $\lim_{\ell \to \infty} p_{\ell} = 0$

For more detailed analysis, we refer the readers to [1], [2].

- Finding the largest erasure probability ε^* (threshold) such that using a BEC with erasure probably $\varepsilon < \varepsilon^*$, we can reliably transmit the LDPC code with (λ, ρ) -Tanner graph for large enough block length.

^{1.} Luby, Michael, Michael Mitzenmacher, and Mohammad Amin Shokrollahi. "Analysis of Random Processes via And-Or Tree Evaluation." SODA. Vol. 98. 1998. 2. Richardson, Thomas J., and Rüdiger L. Urbanke. "The capacity of low-density parity-check codes under message-passing decoding." *IEEE Transactions on*

information theory 47.2 (2001): 599-618.

Asymptotic analysis—density evolution BEC as example

For a variable node with degree *d* $Pr\{v = * \text{ at round } \ell \mid \text{node degree} = d\}$ $= Pr\{\text{all other incoming messages are } * \text{ at round } \ell - 1\}$ $= Pr\{u_0 = * \}Pr\{\forall i \in [d - 1], u_i = * \text{ at round } \ell - 1\}$ $= p_0 Pr\{u = * \text{ at round } \ell - 1\}^{d-1}$

$$p_{\ell} := \Pr\{v = * \text{ at round } \ell\} = \sum_{i=1}^{d_{\nu}} \lambda_i p_0 \Pr\{u = * \text{ at round } \ell - 1\}^{d-1}$$
$$= p_0 \lambda(\Pr\{u = * \text{ at round } \ell - 1\})$$

Next we need to analyze $Pr{u = * at round \ell - 1}$

Asymptotic analysis—density evolution BEC as example

For a check node with degree d $\Pr{u = * \operatorname{at round} \ell | \operatorname{node degree} = d}$ $= Pr\{$ exists some other incoming messag $= 1 - \Pr\{\forall i \in [d-1], v_i \neq * \text{ at round}\}$ $= 1 - (1 - \Pr\{v = * \text{ at round } \ell - 1\})^{d}$

$$\Pr\{u = * \text{ at round } \ell\} = \sum_{i=2}^{d_c} \rho_i (1 - \Pr\{u = * \text{ at round } \ell - 1\})^{d-1}$$
$$= 1 - \rho(1 - \Pr\{u = * \text{ at round } \ell - 1\})$$
$$= 1 - \rho(1 - p_{\ell-1})$$

ge is * at round
$$\ell - 1$$
}
d $\ell - 1$ }
 $\ell - 1$

BP threshold—density evolution BEC as example

By analyzing $Pr\{u = * \text{ at round } \ell - 1\}$ and $Pr\{v = * \text{ at round } \ell - 1\}$, We obtain the recursion $\mathbf{p}_{\ell} = \varepsilon \lambda (\mathbf{1} - \rho (\mathbf{1} - \mathbf{p}_{\ell-1}))$

To ensure $\lim p_{\ell} = 0$, we need $p_{\ell} < (1 - \delta)p_{\ell-1}$ for all ℓ $\ell \to \infty$

This leads to finding the largest ε^* such that $\varepsilon^{\star}\lambda(1-\rho(1-x))-x<0.$

There are close-form solutions for regular LDPC codes.

BP threshold—threshold saturation

In general, BP decoding is *weaker* than MAP decoder. (Example provided in the next section.)

Threshold saturation: When BP threshold and MAP threshold coincide.

SC-LDPC exhibits the threshold saturation phenomena on BEC[3] and BMS[4] channels!

- well over the BEC." IEEE Transactions on Information Theory 57.2 (2011): 803-834.
- Transactions on Information Theory 59.12 (2013): 7761-7813.

3. Kudekar, Shrinivas, Thomas J. Richardson, and Rüdiger L. Urbanke. "Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so

4. Kudekar, Shrinivas, Tom Richardson, and Rüdiger L. Urbanke. "Spatially coupled ensembles universally achieve capacity under belief propagation." IEEE

Protograph with

M-lifting: "Copy and permute."

h protomatrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

M-lifting: "Copy and permute."

h protomatrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Copy *M* times (in this example M = 3)

M-lifting: "Copy and permute."

h protomatrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Copy *M* times (in this example M = 3)

The above graph is disconnected \Rightarrow Permute the edges

Protograph with

M-lifting: "Copy and permute."

h protomatrix
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Copy *M* times (in this example M = 3)

Permute the edges (Here \prod_i 's denote arbitrary permutation matrices)

Spatially Coupled-LDPC Edge spreading: "Copy and spread."

(3,6)–protograph

t =

• • •

Spatially Coupled-LDPC

Edge spreading: "Copy and spread."

Infinite disjoint copies

(3,6)–protograph

Spatially Coupled-LDPC

Spread the edges. Only forward in *t*. (In this example w = 2.)

- Edge spreading: "Copy and spread."
 - Infinite disjoint copies

Coupling width (*w*): the farthest check node that an edge can spread out to.

Spatially Coupled-LDPC Truncation

Truncate.

they are connected to.

Coupling length (*L*): the number of copies of variable nodes

- Keep L copies of variable nodes, all of their edges, and all of the check nodes

Spatially Coupled-LDPC Truncation

Truncate.

Keep L copies of variable nodes, all they are connected to.

Coupling length (L): the number (In this example L = 4.)

- Keep L copies of variable nodes, all of their edges, and all of the check nodes
- Coupling length (L): the number of copies of variable nodes

Spatially Coupled-LDPC A special class of SC-LDPC: $\mathscr{C}(j, k, L)$ SC-LDPC-BC

(3,6)-protograph

(*j*, *k*): the parameter of the base protograph. (In this example (j, k) = (3, 6)) w: the coupling width is chosen as gcd(j, k) - 1(In this example w = gcd(3,6) - 1 = 2)

The above figure is a $\mathscr{C}(3,6,4)$ SC-LDPC-BC.

SC-LDPC vs LDPC

- Pros
 - Better BP thresholds
 - Low error floor
 - Good at burst error correction
- Cons
 - Higher decoding latency
 - Increase decoding complexity
 - Both can be mitigated by slide window decoding
- Applications in 5G, distributed storage, burst error channel...

Abdoul-Hadi Konfé, Pasteur Poda, Raphaël Le Bidan. Design Techniques of Spatially Coupled Low-Density Parity-Check Codes: A Review and Tutorial on 5G New Radio. CARI 2022, Oct 2022, Yaounde, Cameroon.

Mitchell, David GM, et al. "Spatially coupled generalized LDPC codes: Asymptotic analysis and finite length scaling." IEEE Transactions on Information Theory 67.6 (2021): 3708-3723.

BP thresholds for LDPC & SC-LDPC

BP is suboptimal

BP is suboptimal

Construct LDPC code such that BP decoding algorithm is optimal

• Base graph

• L = 3, W = 1

Decoding 'wave'

low degree checks

decoding wave

----->

high degree checks

low degree checks

<-----

i = 1, 5, 20, 50, 90, 98, 99, 100 (from top to bottom).

Fig. 7. Evolution of the average bit erasure probability P_b of the variable nodes at time t for the C(3, 6, 20) SC-LDPC-BC ensemble transmitted over a BEC with erasure probability $\varepsilon = 0.48$ for iterations

Sliding window decoding

Sliding window decoding

Sliding window decoding

Pros & cons of slide window decoding

- Pros
 - Reduce decoding complexity
 - Low latency
- Cons
 - Increasing error floors
 - Increase # of iterations

Herrmann, Matthias, and Norbert Wehn. "Beyond 100 gbit/s pipeline decoders for spatially coupled ldpc codes." *EURASIP Journal on Wireless Communications and Networking* 2022.1 (2022): 90.

Iyengar, Aravind R., et al. "Windowed decoding of protograph-based LDPC convolutional codes over erasure channels." *IEEE Transactions on Information Theory* 58.4 (2011): 2303-2320.

R = 1/2 codes, $\varepsilon_{\rm Sh} = 0.5$.

Fig. 10. BEC iterative BP decoding thresholds for C(3, 6, L) SC-LDPC-BC ensembles with design rate $R_L = (L - 2)/2L$ and the corresponding Shannon limit $\varepsilon_{Sh} = 1 - R_L$ for rate R_L . Also shown are the BP and MAP decoding thresholds for the underlying (3, 6)-regular LDPC-BC ensemble, $\varepsilon^* = 0.429$ and $\varepsilon_{MAP} = 0.4881$, respectively, and the Shannon limit for

Linear Minimum Distance of Protograph-Based LDPC Codes

Why Protograph-Based Code Ensembles?

- SC-LDPC code: Local structures for efficient decoding.
- Consider protograph-based code ensembles in order to both include randomness and preserve local structures.
 - Compared to the usual LDPC ensembles over all Tanner graphs with the same degree distribution.

The Minimum Distance of Protograph-Based Codes

- The structures of protograph-based codes are random.
- Use probabilistic argument to characterize the average performance over the code ensemble.
- With high probability, $d_{\min} > \delta_{\min} n$ as lifting factor M goes to infinity.
 - d_{\min} : Minimum distance of the code.
 - $n \triangleq Mn_v$ is the codelength, where n_v is the number of variable nodes in the protograph.
 - δ_{\min} : The minimum distance growth rate of a code.
 - A metric to compare different codes w.r.t. minimum distances.

Code Ensemble and the Underlying Probability

- Given a protograph.
- Define the **ensemble** of codes to be the set of all the Tanner graphs that can be constructed by M-lifting the protograph [1].
- Define $\mathbb{P}^{(M)}$ to be the uniform probability measure over the ensemble [3].

Example

- Minimum distance of this protograph is 2. •
- There are $(3!)^6$ protographs in this ensemble.

• Each with probability
$$\frac{1}{(3!)^6}$$
.

Example (Conti'd)

• A Tanner graph in the 3-lifted ensemble:

		1	0	0	1	0	0	1	0	0	
•	H =	0	1	0	0	1	0	0	1	0	
		0	0	1	0	0	1	0	0	1	
		1	0	0	1	0	0	1	0	0	•
		0	1	0	0	1	0	0	1	0	
		0	0	1	0	0	1	0	0	1	

- The minimum distance of this graph is 2.
 - The same as that of the protograph.

Example (Conti'd)

• Another Tanner graph in the 3-lifted ensemble:

		1	0	0	0	0	1	0	1	0		
	$\mathbf{H} =$	0	1	0	1	0	0	0	0	1		
Ц		0	0	1	0	1	0	1	0	0		
II		0	0	1	1	0	0	0	1	0	•	
•		0	1	0	0	0	1	1	0	0		
		1	0	0	0	1	0	0	0	1		

- The minimum distance of this graph is 4. ullet
 - Increased minimum distance (compared with the protograph). lacksquare

Average Number of Codewords of a Specific Weight

- For $1 \le d \le Mn_v$, define $A_d^{(M)}$ as the average number of codewords of weight d in the M-lifted code ensemble.
- More explicitly, $A_{\mathcal{A}}^{(M)} \triangleq \mathbb{E}^{(M)}[X_{\mathcal{A}}^{(M)}]$, where
 - $X_d^{(M)}$ is the number of codewords of weight d in **a** code from the M-lifted ensemble.
 - $X_d^{(M)}$ is a **random** variable;

• $\mathbb{E}^{(M)}$ is the expectation operator w.r.t. the probability measure $\mathbb{P}^{(M)}$ [3].

Asymptotic Spectral Shape Function

- Define the asymptotic spectral shape funct
 - - For example, say $\delta = 0.1$.
 - There are 2^n binary words of length n.
 - - Up to some constant factor depending on the base of logarithm.
- $r(\delta)$ only depends on the protograph.

tion
$$r(\delta) \triangleq \limsup_{M \to \infty} r_M(\delta)$$
, where $r_M(\delta) \triangleq \frac{\ln(A_{\delta n}^{(M)})}{n}$.

• Operational meaning of $r_M(\delta)$: The exponent of the average number of codewords of weight δn .

• If there are (on average) $2^{0.3n}$ words that are codewords of weight 0.1n, then $r_M(0.1) = 0.3$.

Minimum Distance Growth Rate

- Define the minimum distance growth rate δ_{\min} to be the first zero-crossing of the function $r(\delta)$.
 - That is, $r(\delta_{\min}) = 0$ and $r(\delta) < 0$ for $0 < \delta < \delta_{\min}$.
 - If exists.
 - For a given protograph, one can calculate $r(\delta)$ by the recursive method in [2] and [5] to determine whether δ_{\min} exists, and if exists, its value.

Probabilistic Guarantee of Linear Minimum Distance

• Consider the probability $\mathbb{P}^{(M)}(d_{\min}^{(M)} < \delta_{\min}n) \leq \sum_{n=1}^{\delta} A_n$

- $d_{\min}^{(M)}$ is the minimum distance of an *M*-lifted code in the ensemble, which is a **random** variable.
- Can be derived by the union bound and Markov's inequality [4, Appendix B]:

• $\mathbb{P}^{(M)}(d_{\min}^{(M)} < \delta_{\min} n) = \mathbb{P}^{(M)}(\text{There is a codeword}$

. By the union bound, we have $\mathbb{P}^{(M)}(\bigcup^{\delta-n-1} \{X_d \geq 0\}$ $\delta \min^{n-1}$ By Markov's inequality, we have $\sum \mathbb{P}^{(M)}(X_d \ge X_d)$ d=1

$$\mathbf{A}_{d}^{(M)}$$
.

of weight
$$< \delta_{\min} n$$
) = $\mathbb{P}^{(M)} (\bigcup_{d=1}^{\delta_{\min} n-1} \{X_d^{(M)} \ge 1\})$
 $1\}) \le \sum_{d=1}^{\delta_{\min} n-1} \mathbb{P}^{(M)}(X_d \ge 1).$
 $\ge 1) \le \sum_{d=1}^{\delta_{\min} n-1} \frac{\mathbb{E}^{(M)}[X_d]}{1} = \sum_{d=1}^{\delta_{\min} n-1} A_d^{(M)}.$

Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

- exponentially in M.
- Rigorous proof: See, for example, [4, Appendix B].

• Intuition: There are $\mathcal{O}(M)$ terms in the summation, each of which decays

Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

- Combining the previous two results, we have $\delta \min^{n-1}$ $\mathbb{P}^{(M)}(d_{\min}^{(M)} < \delta_{\min}n) \le \sum_{d} A_d^{(M)} \to 0.$ d=1
- -lifted ensemble is at least $\delta_{min}n$.
 - Recall again that the codelength is $n = Mn_{v}$.

• For large enough M, with high probability, the minimum distance of the M

- This result explains why δ_{min} is called the minimum distance growth rate.

Comments

- The analysis of the minimum distance of a code ensemble using $A_d^{(M)}$ and $r(\delta)$ can be traced back to the thesis of Gallager [6, Chapter II].
- In [7], exact expressions of $r(\delta)$ for several code ensembles are given.
- A similar approach can be applied for the asymptotic size of trapping sets [8].
- In addition to the recursive method of computing $r(\delta)$ in [2] and [5], one can also find $r(\delta)$ as the solution to an optimization problem [3, Theorem 1].
 - Derivation based on Sanov's theorem.
 - Sanov's theorem can also be used similarly in the analysis of trapping sets [8, Theorem 3.3].

Numerical Examples

C(J,K,L) SC-LDPC-BC Ensembles

- [1, Definition 6].
- Let J, K, L be positive integers.
 - L is the coupling length.
- The $\mathscr{C}(J, K, L)$ ensemble is the weight-lifting code ensemble whose protograph has a parity check matrix on the right [1, (8)].
 - a = gcd(J, K) be the greatest common divisors of J and K.
 - Write J = aJ' and K = aK'.
 - w = a 1.
 - Each \mathbf{B}_i is a J' by K' all-one matrix.
 - The vertical pattern is repeated L times.

Minimum Distance Growth Rate of SC-LDPC-BC Codes

- Consider the $\mathscr{C}(3,6,L)$ SC-LDPC-BC code ensembles [1, Definition 6].
- That is, the code ensemble with protograph

• On the right are the Tanner graph of $\mathbf{B}_{[0,L-1]}$ [1, Fig. 6] and the minimum distance growth rate for different L [1, Table I].

Fig. 6. Protograph of a SC-LDPC-BC ensemble (highlighted in black) with coupling length L and coupling width w = 2 obtained by terminating a (3, 6)-regular convolutional protograph.

TABLE I

MINIMUM DISTANCE GROWTH RATES FOR THE C(3, 6, L)**SC-LDPC-BCENSEMBLES**

	Design Rate R_L	Growth rate $\delta_{\min}^{(L)}$	$\delta_{\min}^{(L)} L/(w+1)$
3	1/6	0.1419	0.142
4	1/4	0.0814	0.109
5	3/10	0.0573	0.096
6	1/3	0.0449	0.090
7	5/14	0.0374	0.087
8	3/8	0.0324	0.086
9	7/18	0.0287	0.086
10	2/5	0.0258	0.086
20	9/20	0.0129	0.086
∞	1/2	0	

73

Minimum Distance Growth Rate of SC-LPDC-BC Codes (Conti'd)

- Consider $\mathscr{C}(J,2J,L)$ code ensembles.
- On the right are the minimum distance growth rate v.s. the design rate of $\mathscr{C}(J,2J,L)$ code ensembles [1, Fig. 9].
 - The Gilbert-Varshamov (G-V) bound: There exist a code with $R \ge 1 - H(\delta_{\min})$ [9], [10], [11, Problem 1.15].
 - The gap between the proposed codes in [1] and the G-V bound is expected: It is difficult to explicitly construct a binary linear code achieving the G-V bound [12].

Minimum distance growth rates for C(J, 2J, L) SC-LDPC-BC Fig. 9. ensembles with design rate $R_L = (L - J + 1)/2L$ and some (J, K)-regular LDPC-BC ensembles with design rate R = 1 - J/K. Also shown is the Gilbert-Varshamov bound for random block code minimum distance growth rates.

BEC Threshold and Minimum Distance of SC-LDPC-BC Ensembles

Fig. 12. (J, K)-regular LDPC-BC ensembles.

BEC iterative BP decoding thresholds and minimum distance growth rates of four $\mathcal{C}(J, K, L)$ SC-LDPC-BC ensembles and several uncoupled

Conclusion

Conclusion

- SC-LDPC code ensembles constructed from protographs have the following property:
 - 1. BP threshold approaches MAP threshold.
 - 2. Minimum distance grows linearly in the codelength *n*.

References

- 9, pp. 4866-4889, Sept. 2015, doi: 10.1109/TIT.2015.2453267.
- 2009, doi: 10.1109/JSAC.2009.090806.
- SA, Australia, 2005, pp. 2156-2160, doi: 10.1109/ISIT.2005.1523728.
- pp. 858-886, Feb. 2011, doi: 10.1109/TIT.2010.2094819.
- ISIT.2006.262129.
- [6] R. G. Gallager, Low-Density Parity-Check Codes. MIT Press, 1963.
- 2002, doi: 10.1109/18.992777.
- pp. 39-55, Jan. 2007, doi: 10.1109/TIT.2006.887060.
- [9] E. N. Gilbert, "A comparison of signalling alphabets," Bell Syst. Tech. J., vol. 31, no. 3, pp. 504–522, May 1952.
- [10] R. R. Varshamov, "Estimate of the number of signals in error correcting codes," Doklady Akademii Nauk SSSR, vol. 117, no. 5, pp. 739–741, 1957.
- [11] Richardson, Tom, and Ruediger Urbanke. Modern coding theory. Cambridge university press, 2008.
- Sept. 2003.

• (Main reference) [1] D. G. M. Mitchell, M. Lentmaier and D. J. Costello, "Spatially Coupled LDPC Codes Constructed From Protographs," in IEEE Transactions on Information Theory, vol. 61, no. • [2] D. Divsalar, S. Dolinar, C. R. Jones and K. Andrews, "Capacity-approaching protograph codes," in IEEE Journal on Selected Areas in Communications, vol. 27, no. 6, pp. 876-888, August • [3] S. L. Fogal, R. McEliece and J. Thorpe, "Enumerators for protograph ensembles of LDPC codes," Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., Adelaide, • [4] S. Abu-Surra, D. Divsalar and W. E. Ryan, "Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes," in IEEE Transactions on Information Theory, vol. 57, no. 2, • [5] D. Divsalar, "Ensemble Weight Enumerators for Protograph LDPC Codes," 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 2006, pp. 1554-1558, doi: 10.1109/

• [7] S. Litsyn and V. Shevelev, "On ensembles of low-density parity-check codes: asymptotic distance distributions," in IEEE Transactions on Information Theory, vol. 48, no. 4, pp. 887-908, April • [8] O. Milenkovic, E. Soljanin and P. Whiting, "Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles," in IEEE Transactions on Information Theory, vol. 53, no. 1,

• [12] V. Guruswami and P. Indyk, "Efficiently decodable low-rate codes meeting Gilbert Varshamov bound," in Proc. 41st Annual Allerton Conference on Communication, Control and Computing,