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Preliminaries

• Regular/irregular LDPC codes

• Message passing and BP threshold

• Protograph, lifting and edge spreading
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LDPC code—Tanner graph

c2 : v1 + v2 + v3 + v4 = 0

c3 : v3 + v4 + v5 + v6 = 0

c4 : v5 + v6 + v7 + v8 = 0

Bipartite graph represents parity-check equations

-regular LDPC code 
Each variable node has the same degree, and each 
check nodes has the same degree 
: degree of variable nodes  
: degree of check nodes

(j, k)

j
k

Example 
-LDPC code(2,4)

c1 : v1 + v2 + v7 + v8 = 0
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LDPC code—Tanner graph

irregular LDPC code 
Defined by degree distribution functions 

 

 max degree of variable(check) nodes 
 fraction of edges connected to  

variable(check) nodes of degree 

λ(x) =
dv

∑
i=1

λixi−1 ρ(x) =
dc

∑
i=2

ρixi−1

dv(dc) :
λi(ρi) :

i

Example 

λ(x) =
1
3

+
2
3

x ρ(x) =
1
6

x +
1
2

x2 +
1
3

x3

v8
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v6

v5

v4
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v2

v1

c1

c2

c3

c4

Bipartite graph represents parity-check equations
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LDPC code—Design rate

Given a Tanner graph of the LDPC code, the design rate is defined as 

R = 1 −
#(check nodes)

#(variable nodes)

For a -regular LDPC code, ( j, k) R = 1 −
j
k

For an irregular LDPC code with degree distribution , (λ, ρ)

 R = 1 −
∑j

ρj

j

∑k
ρk

k

= 1 −
∫ 1

0
ρ(x)dx

∫ 1
0

λ(x)dx
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LDPC decoding—message passing

v8

v7

v6

v5

v4

v3

v2

v1

c1

c2

c3

c4

Variable to check message

Aggregate information from all other check 
nodes

v1u0 = *

u2 = *

v = *

BEC as example

• All other incoming messages are , send * *
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LDPC decoding—message passing

v8

v7

v6

v5

v4

v3

v2

v1

c1

c2

c3

c4

Variable to check message

Aggregate information from all other check 
nodes

v1u0 = *

u2 = *

v = *

• All other incoming messages are , send * *

• Any other incoming messages is , send 
. If , set .

b ∈ {0,1}
b u0 = * u0 = b

v1u0 = *

u2 = 1

v = 1

BEC as example
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LDPC decoding—message passing

v8

v7

v6

v5

v4

v3

v2

v1

c1

c2

c3

c4

Variable to check message

v1u0 = *

u2 = *

v = *

Aggregate information from all other check 
nodes

• Any other incoming messages is , send 
. If , set .

b ∈ {0,1}
b u0 = * u0 = b

v1u0 = 1

u2 = 1

v = 1

BEC as example

• All other incoming messages are , send * *

9



LDPC decoding—message passing

v8

v7

v6

v5

v4

v3

v2

v1

c1

c2

c3

c4

Check to variable message

Aggregate information from all other 
variable nodes

c1

u = *

v2 = 1

v3 = 0

v4 = *

BEC as example

• Any other incoming messages are , send * *
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LDPC decoding—message passing

v8

v7

v6

v5

v4

v3

v2

v1

c1

c2

c3

c4

Check to variable message

Aggregate information from all other 
variable nodes

• Any other incoming messages are , send * *

c1

u = *

v2 = 1

v3 = 0

v4 = *

• All other incoming messages are  or , send 
XOR of all other incoming messages

0 1

c1

u = 0

v2 = 1

v3 = 0

v4 = 1

BEC as example
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BP threshold—density evolution

Finding the largest erasure probability  (threshold) such that using a BEC with erasure probably 
, we can reliably transmit the LDPC code with -Tanner graph for large enough block length.

ε⋆

ε < ε⋆ (λ, ρ)

BEC as example
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Finding the largest erasure probability  (threshold) such that using a BEC with erasure probably 
, we can reliably transmit the LDPC code with -Tanner graph for large enough block length.

ε⋆

ε < ε⋆ (λ, ρ)

Assume cycle-free, so the messages are independent

,    the erasure probabilitypℓ := Pr{v = *  at round ℓ} p0 = ε
<Remark> Recall that  denotes a variable-to-check message.v

Density evolution gives a recursion expression of  in terms of pℓ pℓ−1

The threshold  is defined as the largest erasure probability such thatε⋆

lim
ℓ→∞

pℓ = 0

BP threshold—density evolution

For more detailed analysis, we refer the readers to [1], [2].

1. Luby, Michael, Michael Mitzenmacher, and Mohammad Amin Shokrollahi. "Analysis of Random Processes via And-Or Tree Evaluation." SODA. Vol. 98. 1998.
2. Richardson, Thomas J., and Rüdiger L. Urbanke. "The capacity of low-density parity-check codes under message-passing decoding." IEEE Transactions on 

information theory 47.2 (2001): 599-618.

BEC as example

13



Asymptotic analysis—density evolution

For a variable node with degree  
 

 
 

d
Pr{v = *  at round ℓ | node degree = d}
= Pr{all other incoming messages are  *  at round ℓ − 1}
= Pr{u0 = * }Pr{∀i ∈ [d − 1], ui = *  at round ℓ − 1}
= p0Pr{u = *  at round ℓ − 1}d−1

 pℓ := Pr{v = *  at round ℓ} =
dv

∑
i=1

λip0Pr{u = *  at round ℓ − 1}d−1

= p0λ(Pr{u = *  at round ℓ − 1})

Next we need to analyze Pr{u = *  at round ℓ − 1}

BEC as example
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Asymptotic analysis—density evolution

 

 

Pr{u = *  at round ℓ} =
dc

∑
i=2

ρi(1 − Pr{u = *  at round ℓ − 1})d−1

= 1 − ρ(1 − Pr{u = *  at round ℓ − 1})
= 1 − ρ(1 − pℓ−1)

For a check node with degree  
 

 
 

d
Pr{u = *  at round ℓ | node degree = d}
= Pr{exists some other incoming message is  *  at round ℓ − 1}
= 1 − Pr{∀i ∈ [d − 1], vi ≠ *  at round ℓ − 1}
= 1 − (1 − Pr{v = *  at round ℓ − 1})d−1

BEC as example

15



By analyzing  and , We 
obtain the recursion 

Pr{u = *  at round ℓ − 1} Pr{v = *  at round ℓ − 1}
pℓ = ελ(1 − ρ(1 − pℓ−1))

To ensure , we need  for all lim
ℓ→∞

pℓ = 0 pℓ < (1 − δ)pℓ−1 ℓ

This leads to finding the largest  such that  
.

ε⋆

ε⋆λ(1 − ρ(1 − x)) − x < 0

BP threshold—density evolution

There are close-form solutions for regular LDPC codes.

BEC as example
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BP threshold—threshold saturation

In general, BP decoding is weaker than MAP decoder. (Example provided in the next section.)

Threshold saturation: When BP threshold and MAP threshold coincide.

SC-LDPC exhibits the threshold saturation phenomena on 
BEC[3] and BMS[4] channels!

3. Kudekar, Shrinivas, Thomas J. Richardson, and Rüdiger L. Urbanke. "Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so 
well over the BEC." IEEE Transactions on Information Theory 57.2 (2011): 803-834.

4. Kudekar, Shrinivas, Tom Richardson, and Rüdiger L. Urbanke. "Spatially coupled ensembles universally achieve capacity under belief propagation." IEEE 
Transactions on Information Theory 59.12 (2013): 7761-7813.
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LDPC construction—protograph

a b

1 2 3

Protograph with protomatrix   A = [2 1 0
0 1 1]

-lifting: “Copy and permute.”M
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LDPC construction—protograph

a b

1 2 3

Protograph with protomatrix   A = [2 1 0
0 1 1]

a a

1 1 1 2 2 2 3 3 3

a b b b
Copy  times 
(in this example )

M
M = 3

-lifting: “Copy and permute.”M
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LDPC construction—protograph

a b

1 2 3

a a

1 1 1 2 2 2 3 3 3

a b b b

a a

1 1 1 2 2 2 3 3 3

a b b b The above graph is disconnected 
Permute the edges⇒

Protograph with protomatrix   A = [2 1 0
0 1 1]

Copy  times 
(in this example )

M
M = 3

-lifting: “Copy and permute.”M

20



a a

1 1 1 2 2 2 3 3 3

a b b b

LDPC construction—protograph

a b

1 2 3

Permute the edges 
(Here ’s denote arbitrary permutation 
matrices)

∏i

H′ = [2IM IM 0
0 IM IM]

a a

1 1 1 2 2 2 3 3 3

a b b b

H = [
∏1 + ∏2 ∏3 0

0 ∏4 ∏5 ]

-lifting: “Copy and permute.”M

Protograph with protomatrix   A = [2 1 0
0 1 1]

Copy  times 
(in this example )

M
M = 3
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Edge spreading: “Copy and spread.”

c

v0

v1

Spatially Coupled-LDPC

protograph(3,6)−

22



Edge spreading: “Copy and spread.”

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

⋯ ⋯

0 1 2−2 −1t =

Infinite disjoint copies

protograph(3,6)−

Spatially Coupled-LDPC
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Spatially Coupled-LDPC
Edge spreading: “Copy and spread.”

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

⋯ ⋯

0 1 2−2 −1t =

w = 2

Infinite disjoint copies

Spread the edges. Only forward in . 
Coupling width ( ): the farthest check node that an edge can spread out to. 
(In this example .)

t
w

w = 2
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Spatially Coupled-LDPC

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

⋯ ⋯

Truncation

25

Truncate.  
Keep  copies of variable nodes, all of their edges, and all of the check nodes 
they are connected to. 
Coupling length ( ): the number of copies of variable nodes

L

L



Spatially Coupled-LDPC
Truncation

Truncate.  
Keep  copies of variable nodes, all of their edges, and all of the check nodes 
they are connected to. 
Coupling length ( ): the number of copies of variable nodes 
(In this example .)

L

L
L = 4

cc

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

L = 4
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Spatially Coupled-LDPC
A special class of SC-LDPC:  SC-LDPC-BC𝒞( j, k, L)

cc

v0

v1

c

v0

v1

c

v0

v1

c

v0

v1

c

L = 4 w = 2

protograph(3,6)−

( ): the parameter of the base protograph. 
(In this example )
j, k

( j, k) = (3,6)
: the coupling width is chosen as  

(In this example )
w gcd( j, k) − 1

w = gcd(3,6) − 1 = 2

The above figure is a  SC-LDPC-BC.𝒞(3,6,4)
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SC-LDPC vs LDPC
• Pros 

• Better BP thresholds 
• Low error floor 
• Good at burst error correction 

• Cons 
• Higher decoding latency  
• Increase decoding complexity 
• Both can be mitigated by slide window decoding 

• Applications in 5G, distributed storage, burst error channel… 

Mitchell, David GM, et al. "Spatially coupled generalized LDPC codes: Asymptotic analysis and finite length 
scaling." IEEE Transactions on Information Theory 67.6 (2021): 3708-3723.

Abdoul-Hadi Konfé, Pasteur Poda, Raphaël Le Bidan. Design Techniques of Spatially Coupled Low-Density 
Parity-Check Codes: A Review and Tutorial on 5G New Radio. CARI 2022, Oct 2022, Yaounde, Cameroon.
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BP thresholds for 
LDPC & SC-LDPC
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BP for LDPC 

0 ? 0 ? 0 ? 1
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BP for LDPC

0 ? 0 ? 0 ? 1
31



BP for LDPC

0 0 0 ? 0 ? 1
32



BP for LDPC

0 0 0 1 0 1 1
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BP is suboptimal

? ? ? 0 0 1 0
34



BP is suboptimal

0 0 1 0

?1 = ?2?1 ≠ ?3?1 + ?2 + ?3 = 0

?1 ?2 ?3
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BP is suboptimal

1 1 0 0 0 1 0
36



                 Construct LDPC code  
                           such that 
       BP decoding algorithm is optimal 
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BP for SC-LDPC

• Base graph

38



BP for SC-LDPC

• L = 3, W = 1

? ? ? ? ? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ? ? ?

41



BP for SC-LDPC

? ? ? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ?
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BP for SC-LDPC

? ? ? ? ?

46



BP for SC-LDPC

? ?

47



BP for SC-LDPC
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BP for SC-LDPC
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Decoding ‘wave’  
low degree 
 checks

low degree  
checks

high degree  
checks

decoding wave  
-----------------------------> 

           decoding wave 
<--------------------------
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Sliding window decoding
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Sliding window decoding
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Sliding window decoding
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Pros & cons of slide window decoding

• Pros 
• Reduce decoding complexity 
• Low latency 

• Cons 
• Increasing error floors 
• Increase # of iterations

Iyengar, Aravind R., et al. "Windowed decoding of protograph-based LDPC convolutional codes 
over erasure channels." IEEE Transactions on Information Theory 58.4 (2011): 2303-2320.

Herrmann, Matthias, and Norbert Wehn. "Beyond 100 gbit/s pipeline decoders for spatially 
coupled ldpc codes." EURASIP Journal on Wireless Communications and Networking 2022.1 
(2022): 90.
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Linear Minimum Distance of 
Protograph-Based LDPC Codes
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Why Protograph-Based Code Ensembles?

• SC-LDPC code: Local structures for efficient decoding.


• Consider protograph-based code ensembles in order to both include 
randomness and preserve local structures.


• Compared to the usual LDPC ensembles over all Tanner graphs with the 
same degree distribution.
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The Minimum Distance of Protograph-Based Codes

• The structures of protograph-based codes are random.


• Use probabilistic argument to characterize the average performance over the code 
ensemble.


• With high probability,  as lifting factor  goes to infinity.


• : Minimum distance of the code.


•  is the codelength, where  is the number of variable nodes in the protograph.


• : The minimum distance growth rate of a code.


• A metric to compare different codes w.r.t. minimum distances.

dmin > δminn M

dmin

n ≜ Mnv nv

δmin
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Code Ensemble and the Underlying Probability

• Given a protograph.


• Define the ensemble of codes to be the set of all the Tanner graphs that can 
be constructed by -lifting the protograph [1].


• Define  to be the uniform probability measure over the ensemble [3].

M

ℙ(M)
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Example

• Consider the protograph  and the lifting factor .


• Tanner graph of :


• Minimum distance of this protograph is 2.


• There are  protographs in this ensemble.


• Each with probability .

B = [1 1 1
1 1 1] M = 3

B

(3!)6

1
(3!)6

+ +
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Example (Conti'd)

• A Tanner graph in the -lifted ensemble:


•
.


• The minimum distance of this graph is 2.


• The same as that of the protograph.

3

H =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 + + + + + +
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Example (Conti'd)

• Another Tanner graph in the -lifted ensemble:


•
.


• The minimum distance of this graph is 4.


• Increased minimum distance (compared with the protograph).

3

H =

1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 + + + + + +
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Average Number of Codewords of a Specific Weight

• For , define  as the average number of codewords of weight 
 in the -lifted code ensemble.


• More explicitly, , where


•  is the number of codewords of weight  in a code from the -lifted 
ensemble.


•  is a random variable;


•  is the expectation operator w.r.t. the probability measure  [3].

1 ≤ d ≤ Mnv A(M)
d

d M

A(M)
d ≜ 𝔼(M)[X(M)

d ]

X(M)
d d M

X(M)
d

𝔼(M) ℙ(M)
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Asymptotic Spectral Shape Function

• Define the asymptotic spectral shape function , where .


• Operational meaning of : The exponent of the average number of codewords of weight .


• For example, say .


• There are  binary words of length .


• If there are (on average)  words that are codewords of weight , then .


• Up to some constant factor depending on the base of logarithm.


•  only depends on the protograph.

r(δ) ≜ lim sup
M→∞

rM(δ) rM(δ) ≜
ln(A(M)

δn )
n

rM(δ) δn

δ = 0.1

2n n

20.3n 0.1n rM(0.1) = 0.3

r(δ)
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Minimum Distance Growth Rate

• Define the minimum distance growth rate  to be 
the first zero-crossing of the function .


• That is,  and  for .


• If exists.


• For a given protograph, one can calculate  by the 
recursive method in [2] and [5] to determine whether 

 exists, and if exists, its value.

δmin
r(δ)

r(δmin) = 0 r(δ) < 0 0 < δ < δmin

r(δ)

δmin

r(δ)

δ
δmin
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Probabilistic Guarantee of Linear Minimum Distance

• Consider the probability .


•  is the minimum distance of an -lifted code in the ensemble, which is a random variable.


• Can be derived by the union bound and Markov's inequality [4, Appendix B]:


• .


• By the union bound, we have .


• By Markov's inequality, we have 

ℙ(M)(d(M)
min < δminn) ≤

δminn−1

∑
d=1

A(M)
d

d(M)
min M

ℙ(M)(d(M)
min < δminn) = ℙ(M)(There is a codeword of weight  < δminn) = ℙ(M)(

δminn−1

⋃
d=1

{X(M)
d ≥ 1})

ℙ(M)(
δminn−1

⋃
d=1

{Xd ≥ 1}) ≤
δminn−1

∑
d=1

ℙ(M)(Xd ≥ 1)

δminn−1

∑
d=1

ℙ(M)(Xd ≥ 1) ≤
δminn−1

∑
d=1

𝔼(M)[Xd]
1

=
δminn−1

∑
d=1

A(M)
d .
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Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

• We have  as  goes to infinity.


• Intuition: There are  terms in the summation, each of which decays 
exponentially in .


• Rigorous proof: See, for example, [4, Appendix B].

δminn−1

∑
d=1

A(M)
d → 0 M

𝒪(M)
M
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Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

• Combining the previous two results, we have

.


• For large enough , with high probability, the minimum distance of the 
-lifted ensemble is at least .


• Recall again that the codelength is .


• This result explains why  is called the minimum distance growth rate.

ℙ(M)(d(M)
min < δminn) ≤

δminn−1

∑
d=1

A(M)
d → 0

M M
δminn

n = Mnv

δmin
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Comments

• The analysis of the minimum distance of a code ensemble using  and  can be 
traced back to the thesis of Gallager [6, Chapter II].


• In [7], exact expressions of  for several code ensembles are given.


• A similar approach can be applied for the asymptotic size of trapping sets [8].


• In addition to the recursive method of computing  in [2] and [5], one can also find  
as the solution to an optimization problem [3, Theorem 1].


• Derivation based on Sanov's theorem.


• Sanov's theorem can also be used similarly in the analysis of trapping sets [8, Theorem 
3.3].

A(M)
d r(δ)

r(δ)

r(δ) r(δ)
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Numerical Examples
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C(J,K,L) SC-LDPC-BC Ensembles

• [1, Definition 6].


• Let  be positive integers.


•  is the coupling length.


• The  ensemble is the weight-lifting code ensemble whose 
protograph has a parity check matrix on the right [1, (8)].


•  be the greatest common divisors of  and .


• Write  and .


• .


• Each  is a  by  all-one matrix.


• The vertical pattern is repeated  times.

J, K, L

L

𝒞(J, K, L)

a = gcd(J, K) J K

J = aJ′ K = aK′ 

w = a − 1

Bj J′ K′ 

L
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Minimum Distance Growth Rate of SC-LDPC-BC Codes

• Consider the  SC-LDPC-BC code 
ensembles [1, Definition 6].


• That is, the code ensemble with protograph


• On the right are the Tanner graph of  
[1, Fig. 6] and the minimum distance growth 
rate for different  [1, Table I].

𝒞(3,6,L)

B[0,L−1]

L
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Minimum Distance Growth Rate of SC-LPDC-BC Codes (Conti'd)

• Consider  code ensembles.


• On the right are the minimum distance growth 
rate v.s. the design rate of  code 
ensembles [1, Fig. 9].


• The Gilbert-Varshamov (G-V) bound: There 
exist a code with  [9], [10], 
[11, Problem 1.15].


• The gap between the proposed codes in [1] 
and the G-V bound is expected: It is difficult 
to explicitly construct a binary linear code 
achieving the G-V bound [12].

𝒞(J,2J, L)

𝒞(J,2J, L)

R ≥ 1 − H(δmin)

74



BEC Threshold and Minimum Distance of SC-LDPC-BC Ensembles

• [1, Fig. 12].
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Conclusion
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Conclusion

• SC-LDPC code ensembles constructed from protographs have the following 
property:


• 1. BP threshold approaches MAP threshold.


• 2. Minimum distance grows linearly in the codelength .n
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