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Motivation
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Noisy Channel

● Let U1 be an input, and W be a noisy channel through which U1 is passed. Let 
Y1 be the corresponding output for U1

● Now, since W is noisy, the resulting output Y1 might not be equal to U1. Let 
the error probability be ε.

● In such a case, how can we ensure that we get the correct output with a high 
probability?

u1 y1W
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Naive Method: Redundant “Encoding”

Let’s suppose we’re using erasure channels.

With this method, we can reconstruct U1 as 
long as one channel succeeds.

The probability of k independent channels all 
failing is εk, which converges to 0 geometrically 
fast.

W

W

U1 Y1

Y2

W Yk

Is this the perfect channel?

● No, because we’re using k 
channels to send 1 bit. 
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Channel Polarization

We follow the below steps for decoding.

1. Use y1 and y2 to decode u1
2. Assume u1 is decoded correctly, use u1, y1, y2 to decode u2
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1. W-: With probability (1-ε)2 receive u1⊕ u2 and u2. In all other cases, u1 is lost.
2. Therefore W- is a BEC(1-(1-ε)2)
3. W+:  With probability ε2, u2 is lost. Therefore, W+ is a BEC(ε2)

Therefore, we can see that there is some level of polarization with W+ and W- 
showing different error probabilities.

u1

y1

y2

u2

y1

y2

u1
W-

W+
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Visual Interpretation of the Polarized Channels
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Channel Polarization

What is it?

- Combining a variety of memoryless binary 
symmetric channels into new virtual 
channels, which can be described in 
terms of inputs and outputs instead of a 
physical design.

What is useful about these virtual channels?

- We can construct them such that their 
channel capacities asymptotically 
approach 0 or 1 i.e. they are polarized

W

W

U1 Y1

Y2

W Yk

Virtual Channel
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Why Would This Be Useful?

What if we could use lossy channels to 
make some perfect channels and 
some useless channels?

Perfect Channel:

- Send data without encoding.

Useless Channel:

- Any data will be lost, so agree with 
the decoder to never send data 
through this channel.

C(W) = 1

C(W) = 0

Data Data

Nil

C(W) = 1 Data

Nil

Data
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Big Idea - Combine and Split Channels
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C(W) = 1-Pe

C(W) = 1-Pe

C(W) = 1-Pe

C(W1) ≅ 1

C(W2) ≅ 1

C(WN) ≅ 0

Additional 
Operations



Reducing Error While 
Maintaining Rate
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How do we Combine Channels?

We will use the properties of three techniques:

- Addition modulo 2
- Permutation
- Recursion
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Why These?

These properties relate Polar Codes to a broader class of channel codes called 
block codes, which we see in the textbook as (M, n) codes.

- We know that there exists some (M, n) code where R ≅ C.
- Can we find that code with a tractable transformation of our index set

14



Why These?

For Polar Codes, we use a linear, invertible transformation of the input index 
set.

- Addition modulo 2 is always linear, and invertible in GF(2).
- If you express a set as a vector, permutation is a matrix
- Recursion can be captured through Kronecker products

The paper itself mentions that polar codes resemble Reed-Muller codes, that 
make Plotkin construction more flexible.

6 years after the paper was published, in a 2015 lecture, Arikan identifies this 
computationally tractable transformation O(N log N).
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How do we Split Channels?

We will use the Chain Rule for Mutual Information.
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The W2 Channel

Let’s try the naive approach again, but 
increase the number of bits we send on 
our two channels. Assume U1 and U2 
are independent i.i.d. uniform Bernoulli 
random variables that generate u1 and 
u2.
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Transforming Combinations of Binary Input Channels

Remember that we will use the chain 
rule to split channels. To that end, we 
can relate U1 and U2 causally:

- u1 and u2 are sent.
- The decoder receives y1 and y2 

and uses them to estimate u1, 
assuming that u2 is just noise.

- Then, using that estimate for u1, the 
decoder estimates u2.

We’ll discuss the rate later.

18



Simple Computations—Chain Rule

Remember that the channel capacity we’re interested in is the max of I(U(N);Y(N)). 
In our case, this is:

Where the second equality follows from the independence of U1 and U2.
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I(U1;Y
(2))

Suppose that we possess no 
information about U2,  U2 is an 
independent Ber(½) random variable. 
We can treat it as noise in our 
calculations.

For simplicity, assume W is a symmetric 
binary erasure channel.

What is the capacity of the virtual 
channel with “input” U1 and “outputs” Y1, 
Y2?
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I(U1;Y
(2))

Suppose that U2 is an independent uniform Bernoulli RV we can treat as noise. 
Note that, if any channel is erased, then U1 cannot be reconstructed.

Let Εi be the event where Yi is erased, and let P(Εi) = ε.
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I(U2;Y
(2),U1)

Now, assume that we have estimated 
u1, and have also estimated it 
correctly.

What is the capacity of the virtual 
channel with “input” U2 and “outputs” Y1, 
Y2, given U1?
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I(U2;Y
(2),U1)

This time, both channels must be erased in order to fail to reconstruct U2. If Y2 is 
not erased, then U2 = Y2. If Y1 is not erased, then U2 = Y1 ⊕ U1. Following a similar 
reduction as in the previous slide, we find that:
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Capacity Preservation

Note that our capacities are preserved across our combine-and-split operation.

Also, note that 

This is the first hint of our polarization—splitting and combining channels has 
created one virtual channel with greater capacity (W+) and one virtual channel 
with lower capacity (W-).
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Extending W2 to W4

One convenient analytic property of 
binary erasure channels is that the 
resulting virtual channels can be 
physically modeled as binary erasure 
channels.

We want to group the two worst virtual 
channels, (u1;y1,y2) and (u’1;y’1,y’2), 
together.

We also want to group the two best 
channels (u2;u1,y1,y2) and 
(u’2;u’1,y’1,y’2) together.

'

'

'

'

' '

'
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Extending W2 to W4

We construct our outputs to attain the 
following channels, which we will 
denote by their respective mutual 
informations.

- C(W--) = max I(U1 ; Y
(4))

- C(W+-) = max I(U2 ; Y
(4),U1)

- C(W-+) = max I(U3 ; Y
(4),U1,U2)

- C(W++) = max I(U4 ; 
Y(4),U1,U2,U3)
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Resulting Channel Capacities

Because we can treat our virtual channels as binary erasure channels, some 
recursive calculation gives us the following channel capacities:

- C(W--) = 1 - 2(2ε - ε2) + (2ε - ε2)2

- C(W+-) = 1 - (2ε - ε2)2

- C(W-+) = 1 - 2ε2 + ε4

- C(W++) = 1 - ε4

With some algebra, it becomes clear that these channels also conserve the sum of 
all channel capacities: 4 - 4ε.

We can also see that

C(W--) ≤ C(W+-) ≤ 1 - ε ≤ C(W-+) ≤ C(W++)
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Polar Code Channels as a Bounded Martingale

Let W’ denote a “parent channel,” and 
let W- and W+ denote its “child” virtual 
channels where C(W-) ≤ C(W’) ≤ C(W+). 
We can show that, for BECs,

C(W+) = 2C(W’) - C(W’)2

C(W-) = C(W’)2

Assume that we are taking a uniform 
random walk through our “tree” of 
channels. What can we say about that 
process? https://web.stanford.edu/class/ee376a/files/polarcodes.pdf
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Random Walk through Polar Code Channels

Let E[C(W)|C(W’)] denote the expected 
channel capacity of the next step we 
take in our walk.

E[C(W)|C(W’)] = ½ C(W+) + ½ C(W-) = 
C(W’)

This realization points to why a 
“process” of channel capacities appears 
as a martingale, a detail we will 
elaborate on later.

https://web.stanford.edu/class/ee376a/files/polarcodes.pdf
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Mathematical Analysis
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Symmetric Capacity
W: 𝒳→𝒴 is our channel, a generic B-DMC with input alphabet 𝒳, output alphabet 
𝒴, and transition probabilities W(y|x), x∈𝒳, y∈𝒴. The input alphabet will always 
be {0,1}, the output alphabet and the transition probabilities may be arbitrary.

The symmetric capacity is defined as

It is used as our measure of capacity, since it is the highest rate at which reliable 
communication is possible across using inputs of with equal frequency.

I(W) becomes the Shannon capacity under the assumption the distribution of 
errors is the same regardless of whether 0 or 1 is the input.
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Symmetric Capacity and Shannon Capacity

With LOTP, 

Then,

Example: For a Binary Symmetric Channel (BSC), P(y=0)=P(y=1)=½. Then I(W)=1-H(p), which 
is the familiar form of the Shannon capacity for a binary symmetric channel.
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Bhattacharyya Parameter

The Bhattacharyya parameter is defined as 

It is used as our measure of reliability. It is an upper bound on the probability of 
a maximum-likelihood decision error when W is used only once to transmit a 0 or 
1.
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Bhattacharyya Parameter Intuition

It is a measure of reliability because it quantifies how much uncertainty or 
confusion exists in distinguishing between different input symbols based on 
the channel's output. 

For a perfect channel, the output distributions for x=0 and x=1 are disjoint, leading 
to Z(W)=0, which indicates that the channel is completely reliable. For a noisy 
channel, the overlap between the distributions increases, leading to Z(W) 
approaching 1.
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Bounds and Relationships

From the definition, 

- I(W) can be interpreted as an average Kullback-Leibler (KL) divergence between the 
conditional distributions and the marginal distribution, so it is in [0,1]. 

- Z(W) is non-negative, and is upper bounded by 1 by the AM-GM inequality, so it is 
also in [0,1].

They also have the following relationship (we will not prove this here):

which suggests that I(W)≈0 iff Z(W)≈1, I(W)≈1 iff Z(W)≈0.
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Transforming Rate and Reliability

We now first investigate how the rate and reliability parameters change through a 
local (single-step) transformation.

I(W) has the following property (Proposition 4):

In other words, if W is neither perfect nor completely noisy, the single-step 
transform moves the symmetric capacity away from the center, i.e. 
I(W-)<I(W)<I(W+), thus helping polarization. 36



Reliability

Reliability Z(W) has the following property (Proposition 5):
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Rate and Reliability

With these two propositions prepared for each single-step transformation, we can 
directly see the following relationships:

Let I(W2N
(2i - 1)) be analogous to our single-step I(W+) channel.

Let I(W2N
(2)) be analogous to our single-step I(W-) channel.

38



Rate and Reliability

As a result, our cumulative rate and reliability satisfy:

39



Channel Polarization

Now that we know the trend of I(W) and Z(W) during polarization, the asymptotic 
behavior can be derived as follows.
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Channel Polarization

Similarly to our empirical work, we define a random process. We denote each step 
as Kn, and define In = I(Kn), Zn = Z(Kn).
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Proof Sketch

1. From our earlier proposition for reliability, we know that at each step Z(W-) + 
Z(W+) ≤ 2Z(W). Following similar reasoning from our empirical work, we 
reason that Zn is a supermartingale. 

2. By Doob’s Martingale Convergence Theorem, Zn converges in L1 and almost 
surely to some random variable Z∞. 

3. Then,

 E[|Zn+1 - Zn|] = E[|Zn+1 - Z∞ - Zn + Z∞|] ≤ E[|Zn+1 - Z∞|] + E[|Zn - Z∞|] → 0
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Proof Sketch

1. Half of the time, Zn+1 will be Zn
2 from the proposition of reliability. As a result, 

we can expect 

E[|Zn+1 - Zn|] >= ½ E[|Zn
2 - Zn|] = ½ E[Zn(1 - Zn)]  →0

2. Z∞, the limit of Zn can only be 1 or 0 a.s.
3. By relating Z∞ to I∞, we can find that P(I∞=1)=I0 and P(I∞=0)=1-I0.

The symmetric capacity clusters around 0 and 1, except for a vanishing fraction, 
which implies the conclusion of Theorem 1.
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Rate of Polarization

For any achievable rate R, there exists a subset of channels in the Nth level of 
channel polarization, with cardinality greater than NR, where the Bhattacharyya 
parameter increasingly diminishes (i.e. reliability increases) according to a “rate of 
polarization.”

Formally,
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Proof Sketch

1. Let 𝜔 be an outcome, and denote a indicator random variable Bi(𝜔). From the 
proposition of reliability, Bi+1(𝜔)=1 if Zi+1(𝜔) = Zi

2(𝜔). Otherwise, Bi+1(𝜔)=0 and 
Zi+1(𝜔) ≤ 2Zi(𝜔).

2. Define a function that captures the set of outcomes after a “step,” m, where 
our reliability is bounded, i.e.,

3. Now, for that set of outcomes,
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Proof Sketch

1. We know that aaa                                               
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

2. further denote                                                       
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
we have
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Proof Sketch

4.    Using a lemma in the paper (not proven here), we can bound the probability of 
our sets of outcomes: 

one can obtain that

5. Combining these probability bounds, and our previous bounds on Zn, one can 
reach the conclusion of Theorem 2.
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Rate Approaches Entropy of Input

For sufficiently large block size N, we find that:

It turns out that the fraction of channels that are 
perfect (i.e. channels we send data on) is around 
H(X), meaning our rate is H(X).

Recall that I(X;Y) = H(X) when H(X|Y) = 0. As a 
result, our capacity is maximized, as the output is a 
deterministic product of the input!
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Issues

System Scale:

- The roughly-asymptotic results that 
make this a “good code” require a 
significant amount of recursion.

How do we identify these perfect 
channels?

- Other than for BECs, no algorithm 
known
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Summary

Polar coding is a linear block coding technique that approaches channel capacity 
through a simple, recursive, invertible operation that is computationally feasible.
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