Channel Polarization Erdal Arikan

Topics

- Motivation and Intuition
 - (Slides 3-11) Ameya
- Empirical Analysis for BECs
 - (Slides 12-28, Conclusion) Evan
- Mathematical Analysis and Proof Sketches
 - (Slides 29-47) Qiaobo

Motivation

Noisy Channel

- Let U₁ be an input, and W be a noisy channel through which U₁ is passed. Let
 Y₁ be the corresponding output for U₁
- Now, since W is noisy, the resulting output Y₁ might not be equal to U₁. Let the error probability be ε.
- In such a case, how can we ensure that we get the correct output with a high probability?

Naive Method: Redundant "Encoding"

Let's suppose we're using erasure channels.

With this method, we can reconstruct U_1 as long as one channel succeeds.

The probability of **k** independent channels all failing is $\mathbf{\epsilon}^{k}$, which converges to 0 geometrically fast.

Is this the perfect channel?

• No, because we're using **k** channels to send 1 bit.

Channel Polarization

We follow the below steps for decoding.

- 1. Use y_1 and y_2 to decode u_1
- 2. Assume u_1 is decoded correctly, use u_1 , y_1 , y_2 to decode u_2

- 1. **W**⁻: With probability $(1-\varepsilon)^2$ receive $u_1 \oplus u_2$ and u_2 . In all other cases, u_1 is lost.
- 2. Therefore \mathbf{W}^{-} is a BEC(1-(1- ϵ)²)
- 3. **W**⁺: With probability ϵ^2 , u_2 is lost. Therefore, **W**⁺ is a BEC(ϵ^2)

Therefore, we can see that there is some level of polarization with **W**⁺ and **W**⁻ showing different error probabilities.

Visual Interpretation of the Polarized Channels

Channel Polarization

What is it?

 Combining a variety of memoryless binary symmetric channels into new virtual channels, which can be described in terms of inputs and outputs instead of a physical design.

What is useful about these virtual channels?

- We can construct them such that their channel capacities asymptotically approach 0 or 1 i.e. they are **polarized**

Why Would This Be Useful?

What if we could use lossy channels to make some **perfect channels** and some **useless channels**?

Perfect Channel:

- Send data without encoding.

Useless Channel:

 Any data will be lost, so agree with the decoder to never send data through this channel.

Big Idea - Combine and Split Channels

Reducing Error While Maintaining Rate

How do we Combine Channels?

We will use the properties of three techniques:

- Addition modulo 2
- Permutation
- Recursion

Why These?

These properties relate Polar Codes to a broader class of channel codes called **block codes**, which we see in the textbook as **(M, n) codes**.

- We know that there exists **some (M, n) code** where **R** ≅ **C**.
- Can we find that code with a tractable transformation of our index set

Why These?

For Polar Codes, we use a **linear, invertible transformation** of the input index set.

- Addition modulo 2 is always linear, and invertible in GF(2).
- If you express a set as a **vector**, permutation is a **matrix**
- Recursion can be captured through **Kronecker products**

The paper itself mentions that polar codes resemble **Reed-Muller codes**, that make **Plotkin construction** more flexible.

6 years after the paper was published, in a <u>2015 lecture</u>, Arikan identifies this **computationally tractable transformation O(N log N)**.

How do we Split Channels?

We will use the **Chain Rule for Mutual Information**.

The W₂ Channel

Let's try the naive approach again, but increase the number of bits we send on our two channels. Assume U_1 and U_2 are independent i.i.d. uniform Bernoulli random variables that generate u_1 and u_2 .

Transforming Combinations of Binary Input Channels

Remember that we will use the chain rule to split channels. To that end, we can relate U_1 and U_2 causally:

- \mathbf{u}_1 and \mathbf{u}_2 are sent.
- The decoder receives y_1 and y_2 and uses them to estimate u_1 , assuming that u_2 is just noise.
- Then, using that estimate for **u**₁, the decoder estimates **u**₂.

We'll discuss the rate later.

Simple Computations—Chain Rule

Remember that the channel capacity we're interested in is the max of **I(U^(N);Y^(N))**. In our case, this is:

$$egin{aligned} &I(U^{(2)};Y^{(2)}) = I(U_1;Y^{(2)}) + I(U_2;Y^{(2)}|U_1) \ &= I(U_1;Y^{(2)}) + I(U_2;Y^{(2)},U_1) \end{aligned}$$

Where the second equality follows from the independence of U_1 and U_2 .

I(U₁;Y⁽²⁾)

Suppose that we possess no information about U2, U_2 is an independent Ber($\frac{1}{2}$) random variable. We can treat it as noise in our calculations.

For simplicity, assume **W** is a symmetric binary erasure channel.

What is the capacity of the virtual channel with "input" U_1 and "outputs" Y_1 , Y_2 ?

Suppose that U_2 is an independent uniform Bernoulli RV we can treat as noise. Note that, if any channel is erased, then U_1 cannot be reconstructed.

Let \mathbf{E}_i be the event where \mathbf{Y}_i is erased, and let $\mathbf{P}(\mathbf{E}_i) = \boldsymbol{\epsilon}$.

$$\begin{split} I(U_1;Y^{(2)}) &= H(U_1) - H(U_1|Y_1,Y_2) \\ &= H(U_1) - H(U_1|E_1,E_2)(\epsilon^2) - H(U_1|E_1^c,E_2)(\epsilon-\epsilon^2) - H(U_1|E_1,E_2^c)(\epsilon-\epsilon^2) - H(U_1|E_1^c,E_2^c)(1-\epsilon)^2 \\ &= H(U_1)(1-2\epsilon+\epsilon^2) \end{split}$$

 $I(U_2; Y^{(2)}, U_1)$

Now, assume that we have estimated **u**₁, and have also estimated it **correctly**.

What is the capacity of the virtual channel with "input" **U**₂ and "outputs" **Y**₁, **Y**₂, given **U**₁?

$$I(U_2; Y^{(2)}, U_1)$$

This time, both channels must be erased in order to fail to reconstruct U_2 . If Y_2 is not erased, then $U_2 = Y_2$. If Y_1 is not erased, then $U_2 = Y_1 \oplus U_1$. Following a similar reduction as in the previous slide, we find that:

$$I(U_2;Y^{(2)},U_1)=H(U_2)(1-\epsilon^2)$$

Capacity Preservation

Note that our capacities are preserved across our combine-and-split operation.

$$(1-\epsilon^2)+(1-2\epsilon+\epsilon^2)=2-2\epsilon=(1-\epsilon)+(1+\epsilon)$$

Also, note that

$$1-2\epsilon+\epsilon^2\leq 1-\epsilon\leq 1-\epsilon^2$$

This is the first hint of our polarization—splitting and combining channels has created one virtual channel with **greater capacity** (W^+) and one virtual channel with **lower capacity** (W^-).

Extending W₂ to W₄

One convenient analytic property of binary erasure channels is that the resulting virtual channels can be **physically modeled as binary erasure channels.**

We want to group the two worst virtual channels, $(\mathbf{u}_1; \mathbf{y}_1, \mathbf{y}_2)$ and $(\mathbf{u'}_1; \mathbf{y'}_1, \mathbf{y'}_2)$, together.

We also want to group the two best channels $(\mathbf{u}_2; \mathbf{u}_1, \mathbf{y}_1, \mathbf{y}_2)$ and $(\mathbf{u'}_2; \mathbf{u'}_1, \mathbf{y'}_1, \mathbf{y'}_2)$ together.

Extending W₂ to W₄

We construct our outputs to attain the following channels, which we will denote by their respective mutual informations.

- $C(W^{--}) = \max I(U_1; Y^{(4)})$
- $C(W^{+-}) = \max I(U_2; Y^{(4)}, U_1)$
- $C(W^{-+}) = \max I(U_3^{-}; Y^{(4)}, U_1^{-}, U_2)$
- $C(W^{++}) = \max I(U_4;$ $Y^{(4)}, U_1, U_2, U_3)$

Fig. 2. The channel W_4 and its relation to W_2 and W.

Resulting Channel Capacities

Because we can treat our virtual channels as binary erasure channels, some recursive calculation gives us the following channel capacities:

- $C(W^{--}) = 1 2(2\epsilon \epsilon^2) + (2\epsilon \epsilon^2)^2$
- $C(W^{+-}) = 1 (2\epsilon \epsilon^2)^2$
- $C(W^{-+}) = 1 2\epsilon^2 + \epsilon^4$
- $C(W^{++}) = 1 \epsilon^4$

With some algebra, it becomes clear that these channels also conserve the sum of all channel capacities: **4** - 4ϵ .

We can also see that

```
C(W^{\text{--}}) \leq C(W^{\text{+-}}) \leq 1 - \epsilon \leq C(W^{\text{-+}}) \leq C(W^{\text{++}})
```

Polar Code Channels as a Bounded Martingale

Let **W'** denote a "parent channel," and let **W**⁻ and **W**⁺ denote its "child" virtual channels where $C(W^{-}) \leq C(W') \leq C(W^{+})$. We can show that, for BECs,

$$C(W^{+}) = 2C(W') - C(W')^{2}$$

 $C(W^{-}) = C(W')^{2}$

Assume that we are taking a uniform random walk through our "tree" of channels. What can we say about that process?

https://web.stanford.edu/class/ee376a/files/polarcodes.pdf

Random Walk through Polar Code Channels

Let **E[C(W)|C(W')]** denote the expected channel capacity of the next **step** we take in our walk.

$$E[C(W)|C(W')] = \frac{1}{2}C(W^+) + \frac{1}{2}C(W^-) = C(W')$$

This realization points to why a "process" of channel capacities appears as a martingale, a detail we will elaborate on later.

https://web.stanford.edu/class/ee376a/files/polarcodes.pdf

Mathematical Analysis

Symmetric Capacity

W: $\mathscr{X} \to \mathscr{Y}$ is our channel, a generic B-DMC with input alphabet \mathscr{X} , output alphabet \mathscr{Y} , and transition probabilities **W**(**y**|**x**), $x \in \mathscr{X}$, $y \in \mathscr{Y}$. The input alphabet will always be {0,1}, the output alphabet and the transition probabilities may be arbitrary.

The symmetric capacity is defined as

$$I(W) \stackrel{\Delta}{=} \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \frac{1}{2} W(y|x) \log \frac{W(y|x)}{\frac{1}{2}W(y|0) + \frac{1}{2}W(y|1)}$$

It is used as our measure of **capacity**, since it is the highest **rate** at which reliable communication is possible across using **inputs of with equal frequency**.

I(W) becomes the **Shannon capacity** under the assumption the distribution of errors is the same regardless of whether 0 or 1 is the input.

Symmetric Capacity and Shannon Capacity

With LOTP,
$$P_Y(y) = \frac{1}{2}W(y|0) + \frac{1}{2}W(y|1)$$

Then,
 $I(W) = \sum_{y \in Y} \sum_{x \in X} \frac{1}{2}W(y|x)\log_2(\frac{W(y|x)}{P_Y(y)})$
 $= \sum_{y \in Y} \sum_{x \in X} P_X(x)W(y|x)\log_2(\frac{W(y|x)P_X(x)}{P_Y(y)P_X(x)})$
 $= \sum_{y \in Y} \sum_{x \in X} P_{X,Y}(x,y)\log_2(\frac{P_{X,Y}(x,y)}{P_Y(y)P_X(x)})$
 $= I(X;Y)$

Example: For a Binary Symmetric Channel (BSC), **P(y=0)=P(y=1)=**¹/₂. Then **I(W)=1-H(p)**, which is the familiar form of the Shannon capacity for a binary symmetric channel.

Bhattacharyya Parameter

The Bhattacharyya parameter is defined as

$$Z(W) \stackrel{\Delta}{=} \sum_{y \in \mathcal{Y}} \sqrt{W(y|0)W(y|1)}.$$

It is used as our measure of **reliability**. It is an **upper bound** on the probability of a maximum-likelihood decision error when **W** is used only once to transmit a 0 or 1.

Bhattacharyya Parameter Intuition

It is a measure of reliability because it quantifies how much uncertainty or confusion exists in **distinguishing between different input symbols** based on the channel's output.

For a perfect channel, the output distributions for x=0 and x=1 are disjoint, leading to **Z(W)=0**, which indicates that the channel is completely reliable. For a noisy channel, the overlap between the distributions increases, leading to **Z(W)** approaching 1.

Bounds and Relationships

From the definition,

- **I(W)** can be interpreted as an average Kullback-Leibler (KL) divergence between the conditional distributions and the marginal distribution, so it is in [0,1].
- **Z(W)** is non-negative, and is upper bounded by 1 by the AM-GM inequality, so it is also in [0,1].

They also have the following relationship (we will not prove this here):

Proposition 1: For any B-DMC W, we have

$$I(W) \ge \log \frac{2}{1 + Z(W)}$$
$$I(W) \le \sqrt{1 - Z(W)^2}.$$

which suggests that I(W)≈0 iff Z(W)≈1, I(W)≈1 iff Z(W)≈0.

Transforming Rate and Reliability

We now first investigate how the rate and reliability parameters change through a local (single-step) transformation.

I(W) has the following property (Proposition 4):

$$egin{aligned} &I(W^-)+I(W^+)=2I(W)\ &I(W^-)\leq I(W^+)\ \end{aligned}$$
 with equality iff $I(W)$ equals 0 or 1.

In other words, if **W** is neither perfect nor completely noisy, the single-step transform moves the symmetric capacity away from the center, i.e. **I(W⁻)<I(W)<I(W⁺)**, thus helping polarization.

Reliability

Reliability **Z(W)** has the following property (Proposition 5):

$$egin{aligned} &Z(W^+) = Z(W)^2\ &Z(W^-) \leq 2Z(W) - Z(W)^2\ &Z(W^-) \geq Z(W) \geq Z(W^+)\ \end{aligned}$$
 We have $Z(W^-) = Z(W^+)$ if $Z(W)$ equals 0 or 1.
Equality holds in the second equation if W is a BEC.

Rate and Reliability

With these two propositions prepared for each single-step transformation, we can directly see the following relationships:

Let $I(W_{2N}^{(2i-1)})$ be analogous to our single-step $I(W^+)$ channel.

Let $I(W_{2N}^{(2)})$ be analogous to our single-step $I(W^{-})$ channel.

$$\begin{split} I\left(W_{2N}^{(2i-1)}\right) + I\left(W_{2N}^{(2i)}\right) &= 2I\left(W_{N}^{(i)}\right), Z\left(W_{2N}^{(2i-1)}\right) + Z\left(W_{2N}^{(2i)}\right) \le 2Z\left(W_{N}^{(i)}\right) \\ I\left(W_{2N}^{(2i-1)}\right) &\leq I\left(W_{N}^{(i)}\right) \le I\left(W_{2N}^{(2i)}\right), Z\left(W_{2N}^{(2i-1)}\right) \ge Z\left(W_{N}^{(i)}\right) \ge Z\left(W_{2N}^{(2i)}\right) \\ Z\left(W_{2N}^{(2i-1)}\right) &\leq 2Z\left(W_{N}^{(i)}\right) - Z\left(W_{N}^{(i)}\right)^{2}, Z\left(W_{2N}^{(2i)}\right) = Z\left(W_{N}^{(i)}\right)^{2} \end{split}$$

Rate and Reliability

As a result, our cumulative rate and reliability satisfy:

$$\sum_{i=1}^{N} I\left(W_{N}^{(i)}\right) = NI(W), \sum_{i=1}^{N} Z\left(W_{N}^{(i)}\right) \le NZ(W)$$

Channel Polarization

Now that we know the trend of **I(W)** and **Z(W)** during polarization, the asymptotic behavior can be derived as follows.

Theorem 1: For any B-DMC W, the channels $\{W_N^{(i)}\}$ polarize in the sense that, for any fixed $\delta \in (0,1)$, as N goes to infinity through powers of two, the fraction of indices $i \in \{1, \ldots, N\}$ for which $I(W_N^{(i)}) \in (1 - \delta, 1]$ goes to I(W) and the fraction for which $I(W_N^{(i)}) \in [0, \delta)$ goes to 1 - I(W).

Channel Polarization

Similarly to our empirical work, we define a random process. We denote each step as K_n , and define $I_n = I(K_n)$, $Z_n = Z(K_n)$.

- From our earlier proposition for reliability, we know that at each step Z(W⁻) + Z(W⁺) ≤ 2Z(W). Following similar reasoning from our empirical work, we reason that Z_n is a supermartingale.
- By Doob's Martingale Convergence Theorem, Z_n converges in L₁ and almost surely to some random variable Z_∞.
- 3. Then,

$$\mathsf{E}[|\mathsf{Z}_{\mathsf{n+1}} - \mathsf{Z}_{\mathsf{n}}|] = \mathsf{E}[|\mathsf{Z}_{\mathsf{n+1}} - \mathsf{Z}_{\scriptscriptstyle \varpi} - \mathsf{Z}_{\mathsf{n}} + \mathsf{Z}_{\scriptscriptstyle \varpi}|] \le \mathsf{E}[|\mathsf{Z}_{\mathsf{n+1}} - \mathsf{Z}_{\scriptscriptstyle \varpi}|] + \mathsf{E}[|\mathsf{Z}_{\mathsf{n}} - \mathsf{Z}_{\scriptscriptstyle \varpi}|] \to \mathbf{0}$$

1. Half of the time, Z_{n+1} will be Z_n^2 from the proposition of reliability. As a result, we can expect

$$\mathsf{E}[|\mathsf{Z}_{n+1} - \mathsf{Z}_n|] \ge \frac{1}{2} \mathsf{E}[|\mathsf{Z}_n^2 - \mathsf{Z}_n|] = \frac{1}{2} \mathsf{E}[\mathsf{Z}_n(1 - \mathsf{Z}_n)] \rightarrow \mathbf{0}$$

2.
$$\mathbf{Z}_{\infty}$$
, the limit of \mathbf{Z}_{n} can only be 1 or 0 **a.s.**

3. By relating \mathbf{Z}_{∞} to \mathbf{I}_{∞} , we can find that $\mathbf{P}(\mathbf{I}_{\infty}=1)=\mathbf{I}_{0}$ and $\mathbf{P}(\mathbf{I}_{\infty}=0)=1-\mathbf{I}_{0}$.

The symmetric capacity clusters around 0 and 1, except for a vanishing fraction, which implies the conclusion of Theorem 1.

Rate of Polarization

For any achievable rate **R**, there exists a subset of channels in the **Nth** level of channel polarization, with cardinality greater than **NR**, where the Bhattacharyya parameter increasingly diminishes (i.e. reliability increases) according to a "rate of polarization."

Formally,

Theorem 2: For any B-DMC W with I(W) > 0, and any fixed R < I(W), there exists a sequence of sets $\mathcal{A}_N \subset \{1, \ldots, N\}, N \in \{1, 2, \ldots, 2^n, \ldots\}$, such that $|\mathcal{A}_N| \geq NR$ and $Z(W_N^{(i)}) \leq O(N^{-5/4})$ for all $i \in \mathcal{A}_N$.

- 1. Let ω be an outcome, and denote a indicator random variable $B_i(\omega)$. From the proposition of reliability, $B_{i+1}(\omega)=1$ if $Z_{i+1}(\omega)=Z_i^2(\omega)$. Otherwise, $B_{i+1}(\omega)=0$ and $Z_{i+1}(\omega) \leq 2Z_i(\omega)$.
- 2. Define a function that captures the set of outcomes after a "step," **m**, where our reliability is bounded, i.e., $\mathcal{T}_m(\zeta) \stackrel{\Delta}{=} \{\omega \in \Omega : Z_i(\omega) \leq \zeta \text{ for all } i \geq m\}.$
- 3. Now, for that set of outcomes, $Z_n \leq \frac{Z_n}{Z_{n-1}} \cdot \frac{Z_{n-1}}{Z_{n-2}} \cdot \dots \cdot \frac{Z_{m+1}}{Z_m} \cdot Z_m$ $= Z_m \cdot \prod_{i=m+1}^n \frac{Z_i}{Z_{i-1}}$ $\leq Z_m \cdot \zeta^{|\{i|B_i(\omega)=1,m \leq i \leq n-1\}|} \cdot 2^{|\{i|B_i(\omega)=0,m \leq i \leq n-1\}|}$ $\leq \zeta \cdot 2^{n-m} \cdot \prod_{i=m+1}^n (\frac{\zeta}{2})^{B_i(\omega)}$ 45

1. We know that
$$Z_n(\omega) \leq \zeta \cdot 2^{n-m} \cdot \prod_{i=m+1}^n (\zeta/2)^{B_i(\omega)}, \quad \omega \in T_m(\zeta), n > m.$$

2. further denote
$$\mathcal{U}_{m,n}(\eta) \stackrel{\Delta}{=} \{\omega \in \Omega : \sum_{i=m+1}^{n} B_i(\omega) > (1/2 - \eta)(n - m)\}.$$

we have
$$Z_n(\omega) \leq \zeta \cdot \left[2^{\frac{1}{2}+\eta} \zeta^{\frac{1}{2}-\eta}\right]^{n-m}, \quad \omega \in \mathcal{T}_m(\zeta) \cap \mathcal{U}_{m,n}(\eta)$$

4. Using a lemma in the paper (not proven here), we can bound the probability of our sets of outcomes:

$$P[T_{m_0}(\zeta)] \ge I_0 - \delta/2, P[U_{m,n}(\eta)] \ge 1 - 2^{-(n-m)\left[1 - H\left(\frac{1}{2} - \eta\right)\right]}$$

one can obtain that

$$P[T_{m_1}(\zeta_0) \cap U_{m_1,n}(\eta_0)] \ge I_0 - \delta, \quad n \ge n_1$$

5. Combining these probability bounds, and our previous bounds on Z_n , one can reach the conclusion of Theorem 2.

Rate Approaches Entropy of Input

For sufficiently large block size **N**, we find that:

$$egin{aligned} NH(X) &= H(X^N) = H(U^N) \ &= \sum_{i=1}^N H(U_i | U^{i-1}) \ &pprox \sum_{H(U_i | U^{i-1}) = 1} 1 \ &= |\{U_i | H(U_i | U^{i-1}) = 1 orall 1 \leq i \leq N\}| \end{aligned}$$

It turns out that the fraction of channels that are perfect (i.e. channels we send data on) is around **H(X)**, meaning our rate is **H(X)**.

Recall that **I(X;Y) = H(X)** when **H(X|Y) = 0**. As a result, our capacity is maximized, as the output is a deterministic product of the input!

Issues

System Scale:

- The roughly-asymptotic results that make this a "good code" require a significant amount of recursion.

How do we identify these perfect channels?

- Other than for BECs, no algorithm known

Summary

Polar coding is a linear block coding technique that approaches channel capacity through a simple, recursive, invertible operation that is computationally feasible.