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1. Motivation and Problem Statement

• Some channels do not preserve order (abc cba)
• DNA storage
• Packets in a network

Note: while mentioned in
literature, these applications
are not very compelling



1. Motivation and Problem Statement

• A DMC with an extra random permutation step
• Draw one of the many possible permutations of n symbols uniformly

• The order of the received symbols is uninformative
• Instead of sequences into/out of a channel, we care about types 
• A type tells us everything about a sequence except the ordering



1. Motivation and Problem Statement

Definitions: Channel
• Message 𝑊 ∈ {1,2, … , 𝑀}

• Encoded into codeword 𝑋 = 𝑓 𝑊 where X ∈ 𝒳 = {1,2, … , 𝑞}

• DMC channel input 𝑋 yields output 𝑍, Z ∈ 𝒴 = 1,2, … , 𝑘

• Random permutation yields 𝑌 ∈ 𝒴

• Decoded into output 𝑊 = 𝑔(𝑌)

• 𝑃error
()

= Pr {𝑊 ≠ 𝑊 }

Rate is 𝑅 =
୪୭ ெ

୪୭ 
to account for loss of information from random permutation

• The number of distinguishable types is polynomial in n
• The number of distinguishable sequences is exponential in n



1. Motivation and Problem Statement

Definitions (continued): General

• Probability simplex:

∆ିଵ= 𝜋ଵ, 𝜋ଶ, … , 𝜋 :  𝜋 = 1,


ୀଵ
𝜋 ∈ [0,1]

• Method of Types
𝒫 = 𝑃 ∈ ∆ିଵ: 𝑃 =

𝑎ଵ

𝑛
,
𝑎ଶ

𝑛
, … ,

𝑎ଶ

𝑛
 where 𝑎ଵ, 𝑎ଶ, … , 𝑎 ∈ {0,1, … , 𝑛}

𝑇 𝑃 = 𝑥 ∈ 𝒳: 𝑃 =
𝑁(𝑎ଵ|𝑥)

𝑛
,
𝑁(𝑎ଶ|𝑥)

𝑛
, … ,

𝑁(𝑎|𝑥)

𝑛
 



1. Motivation and Problem Statement

Definitions (continued): Channel Distributions

• 𝑃| is a 𝑞 × 𝑘 DMC matrix
• (𝑃|), = 𝑃| 𝑗 𝑏 = 𝑝 for 𝑏 ∈ 𝒳 and 𝑗 ∈ 𝒴

• Rows sum to 1
• 𝑃| s.p. (strictly positive) when 𝑝 > 0  ∀𝑏 ∈ 𝒳, 𝑗 ∈ 𝒴

• 𝑃|గ = 𝑃|
 ∘ 𝑈 is the distribution under fixed type 𝜋 ∈ 𝒫

• Where we draw 𝑈 uniformly from 𝑇 𝜋 (A)
• Then pass independently through the DMC 𝑃|

• Note that 𝑃| and 𝑃| are interchangeable

• Marginal 𝑃 for any 𝑌௧ ∈ 𝑌~𝑃|గ

• Marginal is independent of index 𝑡 due to (A)

𝒳

𝑇 𝝅

𝒴

𝑿𝒏

𝒁𝒏

𝒀𝒏

𝑾

𝑾



1. Motivation and Problem Statement

Definitions (continued): Other Distributions:

• 𝑄 is any distribution over 𝑌

• 𝑄
(𝑦) = ∏ 𝑄 (𝑦)

ୀଵ is the product distribution

• Categorical distribution 𝑄|ఓ with 𝜇 = 𝜇ଵ, . . . , 𝜇 ∈ ∆ିଵ with 𝑄|ఓ 𝑗 = 𝜇

• Multinomial 𝑄|ఓ
 has no direct relevance to a noisy permutation, but simplifies analysis

Nats are used, not bits



1. Motivation and Problem Statement
Theorem 1: Main result

For s.p. (strictly positive) 𝑃|, the capacity of the noisy permutation channel is

𝐶୮ୣ୰୫ 𝑃| =
rank(𝑃|) − 1

2

From [Makur, 2020] we know that (for s.p. 𝑃|)

𝐶୮ୣ୰୫ 𝑃| ≥
rank 𝑃| − 1

2

Thus, we seek a converse (upper) bound to prove theorem 1



1. Motivation and Problem Statement
Markov chain is

𝜋 → 𝑋 → 𝑍 → 𝑌

for some n-type 𝜋 ∈ 𝒫 chosen by the encoder. Thus, should find the 
upper bound of 𝐼(𝜋; 𝑌) to get capacity.

Further, we know
𝐼 𝜋; 𝑌 ≤ max

గ
𝐷 𝑃|గฮ𝑄

𝒳

𝑇 𝝅

𝒴

𝑿𝒏

𝒁𝒏

𝒀𝒏

Proposition 1: Covering for Noisy Permutation Channel

For a noisy permutation channel with DMC 𝑃| and any n-type 𝜋 ∈ 𝒫, we assume that

𝐷 𝑃|గฮ𝑄|ఓഥ
 ≤ 𝑛𝐷 𝑃‖𝑄 + 𝑓(𝑛)

for any distribution 𝑄. Then,

𝐶୮ୣ୰୫ 𝑃| ≤
rank(𝑃|) − 1

2
+ lim

→ஶ

𝑓(𝑛)

log 𝑛



2. Covering Converse

Covering a space of distributions

Consider the space of possible marginals 𝑃

ℒ 𝑃| = ራ  𝜋𝑝ଵ



,  𝜋𝑝ଶ



, … ,  𝜋𝑝

గ∈∆ೖషభ

DMC Probability vec

with dimension 𝑙 =  rank 𝑃|  − 1
𝑃|ℝ 𝑆: dim 𝑆 = rank(𝑃|)

𝑃|Δିଵ
𝑆: dim 𝑆 = rank 𝑃| − 1



2. Covering Converse

Covering a space of distributions (continued)

Define the 𝝐-net covering of ℒ 𝑃| as 𝑁 (also, let 𝜖 = 1/𝑛)

𝑁 is a set of “covering centers” �̅� = (𝜇ଵ, 𝜇ଶ, … , 𝜇) ∈ ∆ିଵ,
and not necessarily �̅� ∈ ℒ 𝑃|

Idea: use a few vectors to describe a space of vectors

1. Every point 𝜋 in space ℒ(𝑃|) is 𝜖-close to some center �̅�, in terms of KLD

max
గ∈ℒ(ೊ|)

min
ఓഥ∈ே

𝐷 𝑄|ఓ
 ∥ 𝑄|ఓഥ

 ≤ 𝜖 =
1

𝑛

𝜖

Background: 𝜖-net covering are a popular tool in CS

∆ିଵ

x

x

x



2. Covering Converse

Covering a space of distributions (continued)

𝑁 ≤ 𝐶 𝑞, 𝑙 𝑛𝑙 /ଶ

2. Cardinality of covering has convenient form

Theorem 4

Why bother with coverings?

𝐼 𝜋; 𝑌 ≤ log 𝑁 + max
గ∈𝒫

min
ఓഥ∈ே

𝐷 𝑃|గ ∥ 𝑄|ఓഥ
 [Yang 1999]

• 𝐶 𝑞, 𝑙 is given in the text, but is independent of n and will be made to vanish

• Reminder: ϵ = 1/𝑛



2. Covering Converse
𝐼 𝜋; 𝑌 ≤ log 𝑁 + max

గ∈𝒫

min
ఓഥ∈ே

𝐷 𝑃|గ ∥ 𝑄|ఓഥ


≤ log 𝑁 + max
గ∈𝒫

min
ఓഥ∈ே

𝑛𝐷 𝑃‖𝑄 + 𝑓 𝑛  

≤ log 𝑁 + 𝑓(𝑛) + max
గ∈𝒫

min
ఓഥ∈ே

𝑛𝐷 𝑃‖𝑄

≤ log 𝑁 + 𝑓(𝑛) + 𝑛
ଵ



≤ log 𝐶 𝑞, 𝑙 𝑛𝑙 /ଶ + 𝑓(𝑛) + 𝑛
ଵ



≤ log 𝐶 𝑞, 𝑙 +


ଶ
log 𝑙 + log 𝑛 + 𝑓(𝑛)) + 𝑛

ଵ



≤


ଶ
log 𝑛 + 𝑐ᇱ + 𝑓(𝑛)

By covering

𝑐ᇱ contains all terms not depending on 𝑛

[Yang 1999]

Assume (for now)

By covering



2. Covering Converse

Proof of proposition 1

log 𝑀 ≤ 𝐼 𝜋; 𝑌 ≤


ଶ
log 𝑛 + 𝑐ᇱ + 𝑓 𝑛

By 𝑅 =
୪୭ ெ

୪୭
we have

𝑅 ≤
𝑙

2
+

𝑐ᇱ

log 𝑛
+

𝑓(𝑛)

log 𝑛

lim
→ஶ

𝑅 =
𝑙

2
+ lim

→ஶ

𝑓(𝑛)

log 𝑛

𝐶୮ୣ୰୫(𝑃|) ≤
rank(𝑃|) − 1

2
+ lim

→ஶ

𝑓(𝑛)

log 𝑛

Thus 

QED (Proposition 1)



2. Covering Converse
Proposition 1: Covering for Noisy Permutation Channel

For a noisy permutation channel with DMC 𝑃| and any n-type 𝜋 ∈ 𝒫, we assume that

𝐷 𝑃|గฮ𝑄|ఓഥ
 ≤ 𝑛𝐷 𝑃‖𝑄 + 𝑓(𝑛)

For any distribution 𝑄෨. Then,

𝐶୮ୣ୰୫ 𝑃| ≤
rank(𝑃|) − 1

2
+ lim

→ஶ

𝑓(𝑛)

log 𝑛

Next (Theorem 2)

Theorem 1: Main result

For s.p. (strictly positive) 𝑃|, the capacity of the noisy permutation channel is

𝐶୮ୣ୰୫ 𝑃| =
rank(𝑃|) − 1

2



3. Divergence under Fixed Types

l Recap Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with �~��(�) in 
uniform, ∀��:

      cQPnDQUPDQPnD YY
n
Y

n
XYYY  |||||| | 

Final goal

1



3. Divergence under Fixed Types

l Proposition 3: Consider (�, �)�~(� × ��|�) in i.i.d, with � = 1{�� ∈ ��(�)}:

l Proof (1/2):
l with: (��|�

� ∘ �)(��) = �[�� = ��|� = 1];
l  
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3. Divergence under Fixed Types

l Proposition 3: Consider (�, �)�~(� × ��|�) in i.i.d, with � = 1{�� ∈ ��(�)}:

l Proof (2/2): 
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3. Divergence under Fixed Types

l Recap Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with �~��(�) in 
uniform, ∀��:

l Recap Proposition 3: Consider a noisy permutation channel with DMC ��|�, for any � ∈ ��:

l What’s next?
l Equals to proof:

      cQPnDQUPDQPnD YY
n
Y

n
XYYY  |||||| | 

Final goal
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|1log1|||||| 
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3. Divergence under Fixed Types

l Equalized Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with �~��(�) in 
uniform, ∀��:

l Let’s prove the lower bound:

l We only need to prove the upper bound for remaining part.

    c
AP

yYAPAyYP
nn Yy
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3. Divergence under Fixed Types

l Equalized Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with �~��(�) in 
uniform, ∀��:

l The lower bound has been proved in previous slides:
l To prove the upper bound:

    c
AP

yYAPAyYP
nn Yy

nn
nn 




 
 )1(

|1log1|0 Final goal

      1log1~|~|1~log1|
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3. Divergence under Fixed Types

l Lemma 2: Let (�, �)�~(� × ��|�) in i.i.d, with � = 1{�� ∈ ��(�)}, and � = (�1, ⋯��) ∈ ��:

l Proof (1/1):
l Stirling approximation: 2�� �

�
 
�
�

1
12�+1 ≤ �! ≤ 2�� �

�
 
�
�

1
12�; 

n
qnpn

AP
ipi

i 12
12log

2
1log

2
1log

2
1

)1(
1log

0:





 




Method of Types

)
12

2log
2
1log

2
1(2log

2
1log

2
1

)!(
)(log!log

,
log

)1(log

1

1

1
1

n
qnpnpnn

np
np

n
n

p
npnp

n

AP

ii

q

i

i

np
i

q

in

np
i

q

i
q

i

i























































Stirling approx.

②

7



3. Divergence under Fixed Types

l Recap equalized Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with 
�~��(�) in uniform, ∀��:

l From Lemma 2 which we have proved:

l We can get:
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3. Divergence under Fixed Types

l Theorem 5 (Petrov 2012): When �(�� − �� ≤− ��/2) ≥ ��, �(�� − �� ≥ ��/2) ≥ ��, � = 1,⋯, �, ∃�:

l This provides us a conclusion: Let ��~���������(��), �� =  �=1
� ��,

l Lemma 3: Independently throw � balls into one of � bins, we get:
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3. Divergence under Fixed Types

l A useful bound: 
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3. Divergence under Fixed Types

l Lemma 3: Independently throw � balls into one of � bins, we get:

l Proof:
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� = 3 bins

��,�: Probability of �-th ball threw into �-th bin.
�1 = 1 �2 = 1 �3 = 3 

Increasing order
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[Petrov 2012]

useful bound
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3. Divergence under Fixed Types

l To prove the upper bound:
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3. Divergence under Fixed Types

l Recap Theorem 2: When ��|� is s.p. (stricyly positive), ∃ � = �(��|�), ∀� ∈ ��, with �~��(�) in 
uniform, ∀��:

l Recap Proposition 1: Consider a noisy permutation channel with DMC ��|�, for any � ∈ ��, with 
� ��|�

� ∘ �||��
� ≤ ��(��||��) + �(�), we get:

l Recap [Makur 2020], that:

l Combine them, we get the main result Theorem 1:
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Thank you for your attention!
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