
Partition and Code:
Learning How to Compress Graphs

(Bouritsas et al. 2021)

Yuen Chen, Shane Wang, Peizhi Niu

October 29th, 2024

Motivations:

• Graph data become more prevalent:
• Abundance of web-graphs, social networks, and biological

networks.

• Limitations of conventional compression algorithms for graph
data:
• Unlike text, images or videos, graphs lack inherent ordering.

• Main Challenges in Graph Compression:
C1. Dealing with Graph Isomorphism (GI)
C2. Evaluating the Likelihood
C3. Accounting for the Description Length of the Learned Model

Challenges in Graph Compression

C1. Dealing with Graph Isomorphism

a

cb

1

32

≅

• Graph Isomorphism (Informal): two graphs are isomorphic if they
have the same structure but potentially different vertex labels.

• To avoid redundant storage, isomorphic graphs should be encoded
with the same codeword.

• Unfortunately, the complexity of identifying graph isomorphism is
super-polynomial on the number of vertices.

• Current approaches:
• Optimize an ordering of the vertex and encode graphs with

vector-based methods.
• ⟹ Loss in compression

Challenges in Graph Compression

C2. Evaluating the Likelihood

• An optimal encoder need accurate estimate of the probability of
possible outcomes (to assign less bits to more probable ones.)

• In high dimensional data, this is usually done by partitioning the data
into smaller parts.
• Image data: distribution of pixels/patches.
• Text data: distribution of characters or n-grams.

• Issue with graph data: Unclear how to decompose the data
without canonical ordering.

Challenges in Graph Compression

C3. Accounting for the Description Length of the Learned Model

• Deep learning models data distribution with overparametrized
neural networks for better generalization

• In compression, the encoder, i.e., parameters of the neural network,
needs to be stored for decoding
• Large description length for overparametrized model
• ⟹ Inefficient

Related Work

Engineered Codes

• Majority of the graph compression methods are NOT probabilistic.
• Rely on hand-engineered encodings optimized to incorporate

domain knowledge.
• Ideas:

• Reorder the vertices (permute the adjacency matrix) such that
the graph is compression friendly for sequence compressors
(Abbe, 2016).

• Identify frequent substructures for more efficient representation.

• Often based on heuristics such as specific network properties.
• Do not model the underlying graph distribution.

Related Work

Theory-driven approaches

• Few works have attempted to model the graph distribution
• Stochastic Block Models: generate graphs with community

structure
• Any graph clustering algorithm can be used for compression

• (Empirically) But are less effective

Related Work

Likelihood-based neural approaches

• Use generative models for compression:
• Autoregressive models
• Variational autoencoders
• Normalizing flows
• Diffusion models

• Drawbacks:
• Compute probability on labeled graphs instead of isomorphic

class (C1)
• Use heuristic ordering
• Parameter inefficient

Preliminaries

Notations

• 𝐺 = {𝑉, 𝐸} is a graph with
• 𝑛 vertices 𝑉 = {𝑣1, … , 𝑣𝑛} and

• 𝑚 edges 𝐸 = {𝑒𝑖,𝑗 𝑠. 𝑡. 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑒𝑑𝑔𝑒

• Observation Space: 𝔊

• Samples: 𝒢 = 𝐺1, … , 𝐺 𝒢 ⊂ 𝔊

• Description method/symbol code: 𝐶𝑂𝐷𝐸 ∶ 𝔊 → 0,1 ∗

• Input: A graph
• Output: a variable-length sequence of binary symbol (codeword)

Preliminaries

Information Theory

• Goal: Minimize description length of the code, 𝐿𝐶𝑂𝐷𝐸(𝐺)
• i.e., number of bits needed to encode 𝐺
• The codes are uniquely decodable

• Kraft-McMillan inequality implies probability distribution:

• The entropy 𝐻𝑞[𝐺] is a lower bound on the average codelength

• ⟹ compression is equivalent to define a distribution with smallest
entropy

Preliminaries

Baseline Graph Encoding

• Uniform random graph model:
• Assign equal probability all labeled graph with 𝑛 vertices and 𝑚

edges
• Encoding length (assume uniform probability of 𝑛 and 𝑚|n):

Encode # of vertices
Encode # of edges

Encode # of ways to
arrange 𝑚 edges

Methodologies

3 modules:
• Partitioning: decompose into subgraphs
• Graph dictionary: collection of subgraphs
• Graph encoding: transfer subgraphs to bits

Methodologies

Partitioning:

Hi = {Vi, Ei} is the i-th subgraph
C = {V, EC} is a bipartite graph containing all cut edges EC = E − UiEi

pθ(ST): probability of ST

St
H={H1,H2,...Ht}: subgraph state (decisions made at the subgraph level up to step t)

Si
V={vt1,vt2,...vti}: vertex state (decisions made at the vertex level up to i-th vertex selection)

T: number of iterations

We only need to parameterize this two probabilities

Vertex count probabilityVertex selection probability

Methodologies

Partitioning:

GNN embedding

Set function approximator

Vertex count probability

Vertex selection probability

Deepset: https://arxiv.org/abs/1703.06114

Methodologies

Graph Dictionary:

Dictionary will store the most commonly occurring subgraphs

1. If the universe U (all subgraphs) is small enough to enumerate, we can assume an
uniform distribution over U

2. If the universe U is too large too enumerate, subgraphs can be stored one-by-one
based on the null-model encoding (assign equal probability to all labelled graphs with
n vertices and m edges)

Number of
vertices

Number of
edges

Number of
ways to choose

m edges

n: number of vertices
m: number of edges
nmax: upper bound of n

Methodologies

Graph Encoding:

dual encoding of subgraphs: Hdict and Hnull

• Number of subgraphs:

• Dictionary subgraphs:

• Non-Dictionary subgraphs:

• Cut:

• (H,C) Length:

Learnable parameter set:

bdict: |Hdict|
bnull: |Hnull|
q: probability distribution

Methodologies

Graph Encoding:

Cut:

 (mc: total cut, mij: number of edges between each subgraph pair i, j)

C will be encoded hierarchically (uniform encoding of all):
1. Encode total cut count mc

2. Encode pairwise cut count mc

3. Encode the arrangement of the edges

ki: vertex count of subgraph Hi

b: number of subgraphs

Methodologies

Graph Encoding:

Remarks about graph isomorphism (GI):
• given a fixed decomposition, the parameterization is invariant to isomorphism

o isomorphic graphs will be assigned codewords with the same length

• Note that this is not sufficient to guarantee that all isomorphic graphs will be assigned
the same codeword

Optimization and learning algorithms

Dictionary:

• Define xi indicating whether D contains subgraph ai:
• Continuous relaxation:

→ Then we can optimize using the surrogate gradient w.r.t

Parametric graph partitioning algorithm:

• Constrain this space via a differentiable parameterization that allows us to perform
gradient-based optimization (i.e. GNNs, DeepSets, MLPs, Softmax)

Optimization and learning algorithms

Minimize Total Description Length:

Minimum Description Length (MDL) objective:

or

|U| small |U| large

Optimization and learning algorithms

Final MDL objective:

Theoretical analysis

𝐺: Graph

Compare Partition and Code(PnC) with 2 baselines

Baseline1:Partition Baseline2:Erdős–Rényi

a graph is decomposed into subgraphs and cuts, but the
distribution of subgraphs is not modelled.

This method treats all images as unlabeled Erdős–Rényi
graphs (ER graphs), and all unlabeled Erdős–Rényi graphs

with the same number of vertices 𝑛 and edges 𝑚 will be
encoded to the same code.

𝐻: Subgraph 𝐶: Cut 𝐺: Graph

𝐺𝑛,𝑚: The set of all graphs with 𝑛 vertices and 𝑚
edges

Theoretical analysis

(1b) (1a)

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏

blocks of 𝑘 vertices. Then it holds that:

under the following conditions:

(1a)

𝐻𝑚𝑖𝑗
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖𝑗

𝑘2)] and 𝐻𝑚 = 𝔼𝐺~𝑝[𝐻(
𝑚

𝑛2)] is the expected binary entropy

(1b)

of the cut size 𝑚𝑖𝑗 between two subgraphs 𝑖, 𝑗 and that of the total number of edges 𝑚, respectively.

and 𝐻𝑚𝑖
= 𝔼𝐺~𝑝 [𝐻(

𝑚𝑖

𝑘2)] is the expected|𝐷| is the size of the dictionary

binary entropy of the number of edges 𝑚𝑖 in the subgraph 𝑖.

When (1a) hold,then “Partition” better than “ER”

When (1b) hold,then “PnC” better than “Partition”

Theoretical analysis

1 − 𝛿 is the probablity that a subgraph belongs in the dictionary and 𝐻 𝐷 = 𝐻𝑎~𝑞𝜙(𝑎)[𝑎] is the

entropy of the distribution on dictionary atoms 𝑞𝜙 𝑎 .

The compression gain:

(1)

(2)

(1) Large 𝑘, low 𝐻𝑚𝑖𝑗

How to get the compression gain:

(2) Large 𝑘, low 𝐻(𝐷)

Subgraph as large as possible, cut edge as less as possible

Subgraph as large as possible, dictionary need to be reasonably
chosen

Theoretical analysis（Prove Partition’s compression gain from ER）

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏

blocks of 𝑘 vertices:

𝐺: Graph 𝐻: Subgraph 𝐶:

log 𝑘2 + 1 :encode all
possible edges

𝑘2H(
𝑚𝑖

𝑘2):encode actual

edges

Cut

𝐻𝑚𝑖
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖

𝑛2)]

𝐻𝑚𝑖𝑗
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖𝑗

𝑘2)]

Eliminate duplicate vertex
permutations

Theoretical analysis（Prove PnC’s compression gain from Partition）

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏

blocks of 𝑘 vertices:

𝑏𝑑𝑖𝑐𝑡:the number of subgraphs in the dictionaryFor the number of dictionary
subgraph: 1 − 𝛿:the probablity that a subgraph belongs in the dictionary

For dictionary subgraph:

𝑏𝑑𝑖𝑐𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑏, 1 − 𝛿)

The expected length of the subgraphs that belong in the dictionary amounts to the entropy of
the multinomial distribution

𝑏𝑎:the frequence of subgraph 𝑎

𝑞(𝑎):the probability of subgraph 𝑎 exists
in the dictionary

Theoretical analysis（Prove PnC’s compression gain from Partition）

For Graph:

:for subgraphs in the dictionary. Do not need to encode their edges

Proof Finished!

Empirical Results

Datasets: small molecules, proteins and social networks

Baseline:

(1) Uniform model: all edges are assumed to be sampled independently with probability equal to 0.5.

NULL models: No parameters

(2) Edge list model: Lists all the edges in the graph in order, storing the graph structure as edges.

(3) Erdős–Rényi

Partitioning-based: grouping vertices in tightly-connected clusters

(1) SBM fitting: assuming there is a hidden community structure in the graph and the SBM is fitted by
Bayes method.

(2) Louvain clustering: Hierarchical clustering a graph.

(3) Label Propagation: using vertex label propagation to cluster nodes in the graph.

Baseline:

Empirical Results

Likelihood-based neural compressors: With numerous parameters

(1) GraphRNN：a graph generation model based on autoregression, is suitable for generating chain
structures.

(2) GRAN: Graph Recurrent Attention Network, can generate complex graph structures.

Metrics: Average bits per edge (bpe)

Empirical Results

data: cost of compressing the data total: total cost (including params)

PnC can obviously decrease the cost of compression
GraphRNN and GRAN is good at compressing data, but use too many parameters
PnC + Neural can improve the cost of data compression and decrease the number of params

Empirical Results

SBM has good performance, because it’s good at finding community structures
PnC + Neural have best performance on Proteins, because neural networks can capture
complex graph structures
Null models have worst performance on all datasets

References

Abbe, E. (2016). Graph compression: The effect of clusters. 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 1–8. https://doi.org/10.1109/ALLERTON.2016.7852203

Bouritsas, G., Loukas, A., Karalias, N., & Bronstein, M. (2021). Partition and Code: Learning how to compress graphs.
Advances in Neural Information Processing Systems, 34, 18603–18619.
https://proceedings.neurips.cc/paper/2021/hash/9a4d6e8685bd057e4f68930bd7c8ecc0-Abstract.html

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J Smola.
Deep sets. In Advances in Neural Information Processing Systems, pp. 3391–3401, 2017.

https://doi.org/10.1109/ALLERTON.2016.7852203
https://proceedings.neurips.cc/paper/2021/hash/9a4d6e8685bd057e4f68930bd7c8ecc0-Abstract.html

Thank you!

	Slide 1: Partition and Code: Learning How to Compress Graphs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

