
Partition and Code: 
Learning How to Compress Graphs

(Bouritsas et al. 2021)

Yuen Chen, Shane Wang, Peizhi Niu

October 29th, 2024



Motivations: 

• Graph data become more prevalent: 
• Abundance of web-graphs, social networks, and biological 

networks.

• Limitations of conventional compression algorithms for graph 
data:
• Unlike text, images or videos, graphs lack inherent ordering.

• Main Challenges in Graph Compression:
C1. Dealing with Graph Isomorphism (GI)
C2. Evaluating the Likelihood
C3. Accounting for the Description Length of the Learned Model



Challenges in Graph Compression

C1. Dealing with Graph Isomorphism
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• Graph Isomorphism (Informal): two graphs are isomorphic if they 
have the same structure but potentially different vertex labels.

• To avoid redundant storage, isomorphic graphs should  be encoded 
with the same codeword.

• Unfortunately, the complexity of identifying graph isomorphism is 
super-polynomial on the number of vertices.

• Current approaches: 
• Optimize an ordering of the vertex and encode graphs with 

vector-based methods.
• ⟹ Loss in compression



Challenges in Graph Compression

C2. Evaluating the Likelihood

• An optimal encoder need accurate estimate of the probability of 
possible outcomes (to assign less bits to more probable ones.)

• In high dimensional data, this is usually done by partitioning the data 
into smaller parts.
• Image data: distribution of pixels/patches.
• Text data: distribution of characters or n-grams.

• Issue with graph data: Unclear how to decompose the data 
without canonical ordering.



Challenges in Graph Compression

C3. Accounting for the Description Length of the Learned Model

• Deep learning models data distribution with overparametrized 
neural networks for better generalization

• In compression, the encoder, i.e., parameters of the neural network, 
needs to be stored for decoding
• Large description length for overparametrized model 
• ⟹ Inefficient



Related Work

Engineered Codes

• Majority of the graph compression methods are NOT probabilistic.
• Rely on hand-engineered encodings optimized to incorporate 

domain knowledge.
• Ideas: 

• Reorder the vertices (permute the adjacency matrix) such that 
the graph is compression friendly for sequence compressors 
(Abbe, 2016).

• Identify frequent substructures for more efficient representation.

• Often based on heuristics such as specific network properties. 
• Do not model the underlying graph distribution.



Related Work

Theory-driven approaches

• Few works have attempted to model the graph distribution
• Stochastic Block Models: generate graphs with community 

structure
• Any graph clustering algorithm can be used for compression

• (Empirically) But are less effective



Related Work

Likelihood-based neural approaches

• Use generative models for compression:
• Autoregressive models
• Variational autoencoders
• Normalizing flows
• Diffusion models

• Drawbacks:
• Compute probability on labeled graphs instead of isomorphic 

class (C1)
• Use heuristic ordering
• Parameter inefficient



Preliminaries

Notations

• 𝐺 =  {𝑉, 𝐸} is a graph with 
• 𝑛 vertices 𝑉 = {𝑣1, … , 𝑣𝑛} and 

• 𝑚 edges 𝐸 = {𝑒𝑖,𝑗  𝑠. 𝑡.  𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑒𝑑𝑔𝑒

• Observation Space: 𝔊

• Samples: 𝒢 = 𝐺1, … , 𝐺 𝒢 ⊂  𝔊

• Description method/symbol code: 𝐶𝑂𝐷𝐸 ∶ 𝔊 → 0,1 ∗

• Input: A graph
• Output: a variable-length sequence of binary symbol (codeword)



Preliminaries

Information Theory

• Goal: Minimize description length of the code, 𝐿𝐶𝑂𝐷𝐸(𝐺)
• i.e., number of bits needed to encode 𝐺
• The codes are uniquely decodable

• Kraft-McMillan inequality implies probability distribution:

• The entropy 𝐻𝑞[𝐺] is a lower bound on the average codelength

• ⟹ compression is equivalent to define a distribution with smallest 
entropy 



Preliminaries

Baseline Graph Encoding

• Uniform random graph model:
• Assign equal probability all labeled graph with 𝑛 vertices and 𝑚 

edges
• Encoding length (assume uniform probability of 𝑛 and 𝑚|n):

Encode # of  vertices
Encode # of edges

Encode # of ways to 
arrange 𝑚 edges 



Methodologies

3 modules:
• Partitioning: decompose into subgraphs
• Graph dictionary: collection of subgraphs
• Graph encoding: transfer subgraphs to bits



Methodologies

Partitioning:

Hi = {Vi, Ei} is the i-th subgraph
C = {V, EC} is a bipartite graph containing all cut edges EC = E − UiEi

pθ(ST): probability of ST

St
H={H1,H2,...Ht}: subgraph state (decisions made at the subgraph level up to step t) 

Si
V={vt1,vt2,...vti}: vertex state (decisions made at the vertex level up to i-th vertex selection)

T: number of iterations

We only need to parameterize this two probabilities

Vertex count probabilityVertex selection probability 



Methodologies

Partitioning:

GNN embedding

Set function approximator

Vertex count probability

Vertex selection probability 

Deepset: https://arxiv.org/abs/1703.06114



Methodologies

Graph Dictionary:

Dictionary will store the most commonly occurring subgraphs

1. If the universe U (all subgraphs) is small enough to enumerate, we can assume an 
uniform distribution over U

2. If the universe U is too large too enumerate, subgraphs can be stored one-by-one 
based on the null-model encoding (assign equal probability to all labelled graphs with 
n vertices and m edges)

Number of 
vertices

Number of 
edges

Number of 
ways to choose 

m edges

n: number of vertices
m: number of edges
nmax: upper bound of n



Methodologies

Graph Encoding:

dual encoding of subgraphs: Hdict and Hnull

• Number of subgraphs:

• Dictionary subgraphs:

• Non-Dictionary subgraphs:

• Cut:

• (H,C) Length:

Learnable parameter set:

bdict: |Hdict|
bnull: |Hnull|
q: probability distribution



Methodologies

Graph Encoding:

Cut:

  (mc: total cut, mij: number of edges between each subgraph pair i, j)

C will be encoded hierarchically (uniform encoding of all):
1. Encode total cut count mc

2. Encode pairwise cut count mc

3. Encode the arrangement of the edges

ki: vertex count of subgraph Hi

b: number of subgraphs



Methodologies

Graph Encoding:

Remarks about graph isomorphism (GI):
• given a fixed decomposition, the parameterization is invariant to isomorphism

o isomorphic graphs will be assigned codewords with the same length

• Note that this is not sufficient to guarantee that all isomorphic graphs will be assigned 
the same codeword



Optimization and learning algorithms 

Dictionary:

• Define xi indicating whether D contains subgraph ai:
• Continuous relaxation:

→ Then we can optimize using the surrogate gradient w.r.t

Parametric graph partitioning algorithm:

• Constrain this space via a differentiable parameterization that allows us to perform 
gradient-based optimization (i.e. GNNs, DeepSets, MLPs, Softmax) 



Optimization and learning algorithms 

Minimize Total Description Length:

Minimum Description Length (MDL) objective:

or

|U| small |U| large



Optimization and learning algorithms 

Final MDL objective:



Theoretical analysis

𝐺: Graph

Compare Partition and Code(PnC) with 2 baselines

Baseline1:Partition Baseline2:Erdős–Rényi

a graph is decomposed into subgraphs and cuts, but the 
distribution of subgraphs is not modelled.

This method treats all images as unlabeled Erdős–Rényi 
graphs (ER graphs), and all unlabeled Erdős–Rényi graphs 

with the same number of vertices 𝑛 and edges 𝑚 will be 
encoded to the same code.

𝐻: Subgraph 𝐶: Cut 𝐺: Graph

𝐺𝑛,𝑚: The set of all graphs with 𝑛 vertices and 𝑚 
edges



Theoretical analysis

(1b) (1a)

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏 

blocks of 𝑘 vertices. Then it holds that:

under the following conditions:

(1a)

𝐻𝑚𝑖𝑗
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖𝑗

𝑘2 )] and 𝐻𝑚 = 𝔼𝐺~𝑝[𝐻(
𝑚

𝑛2)] is the expected binary entropy

(1b)

of the cut size 𝑚𝑖𝑗 between two subgraphs 𝑖, 𝑗 and that of the total number of edges 𝑚, respectively.

and 𝐻𝑚𝑖
= 𝔼𝐺~𝑝 [𝐻(

𝑚𝑖

𝑘2)] is the expected|𝐷| is the size of the dictionary

binary entropy of the number of edges 𝑚𝑖 in the subgraph 𝑖.

When (1a) hold,then “Partition” better than “ER”

When (1b) hold,then “PnC” better than “Partition”



Theoretical analysis

1 − 𝛿 is the probablity that a subgraph belongs in the dictionary and 𝐻 𝐷 = 𝐻𝑎~𝑞𝜙(𝑎)[𝑎] is the 

entropy of the distribution on dictionary atoms 𝑞𝜙 𝑎 .

The compression gain:

(1)

(2)

(1) Large 𝑘, low 𝐻𝑚𝑖𝑗

How to get the compression gain:

(2) Large 𝑘, low 𝐻(𝐷)

Subgraph as large as possible, cut edge as less as possible

Subgraph as large as possible, dictionary need to be reasonably 
chosen



Theoretical analysis（Prove Partition’s compression gain from ER）

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏 

blocks of 𝑘 vertices:

𝐺: Graph 𝐻: Subgraph 𝐶:

log 𝑘2 + 1 :encode all 
possible edges

𝑘2H(
𝑚𝑖

𝑘2):encode actual 

edges

Cut

𝐻𝑚𝑖
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖

𝑛2)]

𝐻𝑚𝑖𝑗
= 𝔼𝐺~𝑝[𝐻(

𝑚𝑖𝑗

𝑘2 )]

Eliminate duplicate vertex 
permutations



Theoretical analysis（Prove PnC’s compression gain from Partition）

Consider a distribution 𝑝 over graphs with 𝑛 vertices and a partitioning algorithm that decomposes a graph into 𝑏 

blocks of 𝑘 vertices:

𝑏𝑑𝑖𝑐𝑡:the number of subgraphs in the dictionaryFor the number of dictionary 
subgraph: 1 − 𝛿:the probablity that a subgraph belongs in the dictionary 

For dictionary subgraph:

𝑏𝑑𝑖𝑐𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑏, 1 − 𝛿)

The expected length of the subgraphs that belong in the dictionary amounts to the entropy of 
the multinomial distribution

𝑏𝑎:the frequence of subgraph 𝑎

𝑞(𝑎):the probability of subgraph 𝑎 exists 
in the dictionary



Theoretical analysis（Prove PnC’s compression gain from Partition）

For Graph:

:for subgraphs in the dictionary. Do not need to encode their edges

Proof Finished!



Empirical Results

Datasets: small molecules, proteins and social networks

Baseline:

(1) Uniform model: all edges are assumed to be sampled independently with probability equal to 0.5.

NULL models: No parameters

(2) Edge list model: Lists all the edges in the graph in order, storing the graph structure as edges.

(3) Erdős–Rényi

Partitioning-based: grouping vertices in tightly-connected clusters

(1) SBM fitting: assuming there is a hidden community structure in the graph and the SBM is fitted by 
Bayes method.

(2) Louvain clustering: Hierarchical clustering a graph.

(3) Label Propagation: using vertex label propagation to cluster nodes in the graph.



Baseline:

Empirical Results

Likelihood-based neural compressors: With numerous parameters

(1) GraphRNN：a graph generation model based on autoregression, is suitable for generating chain 
structures.

(2) GRAN: Graph Recurrent Attention Network, can generate complex graph structures.

Metrics: Average bits per edge (bpe)



Empirical Results

data: cost of compressing the data total: total cost (including params)

PnC can obviously decrease the cost of compression
GraphRNN and GRAN is good at compressing data, but use too many parameters
PnC + Neural can improve the cost of data compression and decrease the number of params 



Empirical Results

SBM has good performance, because it’s good at finding community structures
PnC + Neural have best performance on Proteins, because neural networks can capture
complex graph structures
Null models have worst performance on all datasets
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Thank you!
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