
DZip: improved neural network based

general-purpose lossless compression

by Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, Idoia Ochoaγ

ECE 563 Project

Students: Huyen Nguyen
Linjie Tong

Outline

1. Introduction
• Arithmetic Coding
• Adaptive Arithmetic coding
• Advantages of neural network-based compressing method

2. DZip: improved neural network based general-purpose lossless compression
• Motivation of DZip
• DZip approach and training procedure
• Compression results

1. Conclusion

Huffman coding

Example of Huffman Coding (not optimal):

+ message of length 10

Can we do better?

Symbol a b c

Frequency 0.45 0.35 0.2

Codeword 0 10 11

Entropy: 1.513 Average length: 1.55

Arithmetic coding:

Arithmetic coding:

Huffman coding vs Arithmetic Coding

Example:

+ message of length 20: aababaaabaabaaaabaa<eos>

+ Huffman Coding requires: 26 bits
+ Arithmetic Coding requires: 20 bits

Symbol a b c

Frequency 0.7 0.2 0.1

Codeword 0 10 11

Entropy: 1.16 Average length of Huffman: 1.30

Arithmetic Coding

Arithmetic Coding require information from the sequence data distribution.

Symbol a b c

Frequency 0.7 0.2 0.1

Codeword 0 10 11

Entropy: 1.16 Average length: 1.30

Question: How can we estimate the true data distribution accurately
and efficiently at the time of message passing?

Adaptive Arithmetic Coding

● In static Arithmetic Coding above, the data distribution used to encode the next
token is static for the entire message passing process.

● However, in real life, true distribution of the sequences proved hard to compute,
predefined distribution hardly approximate the true data distribution.

● Idea of Adaptive Arithmetic Coding:
At each step, the probability distribution will be changed according to the
data observed up until that point. The decoded data matches the original
data as long as the frequency table in decoding is replaced in the same way
and in the same step as in encoding.

• The many approaches used to estimate probability distribution at each iteration.

Adaptive Arithmetic Coding (1)

● Idea: use a dynamic probability distribution which changes with each character
read. Initially, each character is assumed to have the same probability, and each
time a particular symbol 𝑆! is read, its probability for future iterations increases.

● This is based on counting the frequency of occurrence of each characters as we
observe the streamed data at each iteration. (assume the independence of our
data).

● At initialization, uniform distribution can be used, or more sophisticated, to prevent
the redundant data storage (a placeholder for characters that never occur), an
escape character can be used.

Adaptive Arithmetic Coding (2)

● The above modelling may not be the best in estimating the true data distribution.
However, the pros is little overhead.

● More advanced adaptive models an increase the performance by introducing
more overheads:

Ø Weight probabilities at each step based on predictions of the next character.
Ø Using the previous characters or previously seen subsequences as part of the

modelling process (multi-symbol adaptive model, prediction by partial matching).
Ø Adding extra metadata symbols to allow to account for out-of-band information.

Adaptive Arithmetic Coding (3)

● Prediction by Partial matching (PPM):

Idea: We take into account the dependency of the next token and previous
observed subsequences. Recurring patterns of any lengths can be used to
predict the next character and assign the token a probability value. For example,
if the sequence ‘SALSA’ has been seen five times, the sequence ‘SALAD’ has
seen twice, then if the characters ‘SAL’ are encountered in the future, we want to
weight the probability of S higher than that of A.

Adaptive Arithmetic Coding (3)

● Example: A context table showed the occurrence frequency of each
character after a subsequence of different lengths (3 and 2 in this case).

CTX S FREQ
ABC A 3

B 5
C 6

CTX S FREQ

BC A 5

B 10

C 8

D 10

E 15
For context ‘ABC’, the occurrence of the next token being B is 5, so
PPM encodes B with probability 5/14.

CTX table with length is s subset of CTX table with length 2 for the
overlapping characters. Ex: ‘A’ 3 times after ’ABC’, ‘A’ occurs 5 times
after ‘BC’.

Adaptive Arithmetic Coding (3)
● What if the next token has not showed up previously in the data stream? Next

token can be ‘D’, which was never recorded in CTX table of ‘ABC’.
CTX S FREQ
ABC A 3

B 5

C 6
⨂ 1

CTX S FREQ

BC A 5

B 10

C 8

D 10

E 15

⨂ 1

To account for new character, a symbol is added, which is called the ‘escape
symbol’ (⨂) and a probability is assigned to that symbol.
Whenever there is a new character, the escape symbol informs us to jump to
the next table (Ex: jump from CTX table of ‘ABC’ to ‘BC’ to search for ‘D’, and
if ‘D’ never shows up in context of any lengths, jump to uniform distribution).

As we observed more data, the probability distribution gets closer to the true
distribution, and probability of the escape symbol gets smaller.

Advantage of Using Neural Network over Trandition Method

Ability to Model Complex Data Distributions: Neural networks excel at learning non-linear and complex relationships in
data. This allows them to model intricate dependencies that traditional methods may overlook.

Adaptability:Neural networks can generalize well across diverse datasets without requiring extensive manual adjustments.
Traditional approaches often rely on domain-specific knowledge or assumptions that may not always hold.

Better Compression Ratios for High-Dimensional Data: High-dimensional data like images or audio benefit from neural
networks' ability to extract and utilize latent structures effectively. This often leads to better compression ratios compared to traditional
methods.

Integration with Modern Systems: Neural networks integrate easily with other machine learning tasks like feature extraction or
prediction. This makes them ideal when compression is part of a larger automated system.

When Neural Networ is Needed for Compression

1. High Dimensional and Complex Data: Neural networks can model complex,
high-dimensional data distributions better than traditional methods. For
example

2. Nonlinear Dependencies: Neural networks excel at capturing nonlinear
relationships.

3. High Compression Ratio: Neural network can achive high compression ratio
for its learning capacity. If compression ratio is a more significant factor than
compression speed, using Neural Network.

Dzip data compressor motivation

Types of model to estimate the conditional probability

➔ Static:
● model first trained on some external training data and available to both the compressor and

decompressor.
● restricted to cases where similar training data available, not for general-purpose compression tasks.

➔ Adaptive:
● both the compressor and the decompressor initialized with the same random model, model updated

adaptively based on the sequence seen up to some point; not require the availability of training data.

➔ Semi-adaptive:
● model trained based only on input sequence, training procedure can involve multiple passes through

the input data; trained model parameters and arithmetic coding output included in compressed file
● additional cost expected to compensate a better predictive model and smaller arithmetic coding

output.

DZip: combines elements
of semi-adaptive and

adaptive approaches to
achieve better prediction

Dzip training procedure

Dzip training procedure

Dzip inference procedure

Model architecture

Bootstrap model: Achieve trade-off between model
size and prediction capability.

● biGRU helps network learn long-term
dependencies

● Dense layer is important for learning long-term
relationships

Supporter model: The supporter model architecture is
designed to adapt quickly and provide better
probability estimates than the bootstrap model.

● The supporter model consists of three sub-NNs
which act as independent predictors of varying
complexity. The first sub-NN is linear, the
second sub-NN has two dense layers and the
third sub-NN uses residual blocks.

Convex Combination

Training process

First stage: reading the input file byte-by-byte and, based on the vocabulary size,
automatically selecting the hyperparameters for the bootstrap and supporter
models.

Second stage: training the bootstrap model by performing multiple passes through
the sequence.

Third stage:

● Compression ratio: Frozen parameter of Boostrap model and update
parameters in Supporter model.

● Encoding/decoding speed: Just use bootstrap model to compress.

Results

Model is tested on various
type of data:

● Genomic data :h.
chr1, h. chr20, c.e.
genome, npbases
np-quality, ill-quality

● Text: webster, text8,
enwiki9.

● Executable files:
mozilla.

● Double precision
floating point data:
num-control, obs-
spitzer, msg-bt.

● Audio data: audio.Traditional compressors: Gzip, BSC and 7zip.
NN-based compressors: ZPAQ, LSTM Compress, NNCP,
CMIX

Results

Combined model improves the compression by 0.072 bpc on the real datasets. DZip in
bootstrap only mode still outperforms Gzip, 7zip, BSC and LSTM-Compress on most of
the selected datasets, while being more practical due to its reduced running time.

Conclusion

Advantage:

● DZip achieves improvements over Gzip, 7zip, BSC, ZPAQ and LSTM-
Compress.

● DZip also compares favorably with the state-of-the-art NN-based
compressors CMIX and NNCP, achieving similar compression while being
substantially faster.

Disadvantage:

● As a deep learning-based compression method, encoding/decoding is still
time-consuming.

Appendix

Example to show computation of loss

