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Huffman coding

Example of Huffman Coding (not optimal): 

+ message of length 10

Can we do better?

Symbol a b c

Frequency 0.45 0.35 0.2

Codeword 0 10 11

Entropy: 1.513                                  Average length: 1.55



Arithmetic coding: 



Arithmetic coding: 



Huffman coding vs Arithmetic Coding

Example:

+ message of length 20: aababaaabaabaaaabaa<eos>

+ Huffman Coding requires: 26 bits
+ Arithmetic Coding requires: 20 bits

Symbol a b c

Frequency 0.7 0.2 0.1

Codeword 0 10 11

Entropy: 1.16                                  Average length of Huffman: 1.30



Arithmetic Coding 

Arithmetic Coding require information from the sequence data distribution.

Symbol a b c

Frequency 0.7 0.2 0.1

Codeword 0 10 11

Entropy: 1.16                                  Average length: 1.30

Question: How can we estimate the true data distribution accurately 
and efficiently at the time of message passing?



Adaptive Arithmetic Coding 

● In static Arithmetic Coding above, the data distribution used to encode the next 
token is static for the entire message passing process.

● However, in real life, true distribution of the sequences proved hard to compute, 
predefined distribution hardly approximate the true data distribution.

● Idea of Adaptive Arithmetic Coding: 
At each step, the probability distribution will be changed according to the 
data observed up until that point. The decoded data matches the original 
data as long as the frequency table in decoding is replaced in the same way 
and in the same step as in encoding. 

• The many approaches used to estimate probability distribution at each iteration.



Adaptive Arithmetic Coding (1)

● Idea: use a dynamic probability distribution which changes with each character 
read. Initially, each character is assumed to have the same probability, and each 
time a particular symbol 𝑆! is read, its probability for future iterations increases.

● This is based on counting the frequency of occurrence of each characters as we 
observe the streamed data at each iteration. ( assume the independence of our 
data).

● At initialization, uniform distribution can be used, or more sophisticated, to prevent 
the redundant data storage (a placeholder for characters that never occur), an 
escape character can be used. 



Adaptive Arithmetic Coding (2)

● The above modelling may not be the best in estimating the true data distribution. 
However, the pros is little overhead.

● More advanced adaptive models an increase the performance by introducing 
more overheads:

Ø Weight probabilities at each step based on predictions of the next character.
Ø Using the previous characters or previously seen subsequences as part of the 

modelling process (multi-symbol adaptive model, prediction by partial matching).
Ø Adding extra metadata symbols to allow to account for out-of-band information.



Adaptive Arithmetic Coding (3)

● Prediction by Partial matching (PPM):

Idea: We take into account the dependency of the next token and previous 
observed subsequences. Recurring patterns of any lengths can be used to 
predict the next character and assign the token a probability value. For example, 
if the sequence ‘SALSA’ has been seen five times, the sequence ‘SALAD’ has 
seen twice, then if the characters ‘SAL’ are encountered in the future, we want to 
weight the probability of S higher than that of A.



Adaptive Arithmetic Coding (3)

● Example: A context table  showed the occurrence frequency of each 
character after a subsequence of different lengths (3 and 2 in this case).

CTX S FREQ
ABC A 3

B 5
C 6

CTX S FREQ

BC A 5

B 10

C 8

D 10

E 15
For context ‘ABC’, the occurrence of the next token being B is 5, so 
PPM encodes B with probability 5/14.

CTX table with length is s subset of CTX table with length 2 for the 
overlapping characters. Ex: ‘A’ 3 times after ’ABC’, ‘A’ occurs 5 times 
after ‘BC’.



Adaptive Arithmetic Coding (3)
● What if the next token has not showed up previously in the data stream? Next 

token can be ‘D’, which was never recorded in CTX table of ‘ABC’.
CTX S FREQ
ABC A 3

B 5

C 6
⨂ 1

CTX S FREQ

BC A 5

B 10

C 8

D 10

E 15

⨂ 1

To account for new character, a symbol is added, which is called the ‘escape
symbol’ (⨂) and a probability is assigned to that symbol.
Whenever there is a new character, the escape symbol informs us to jump to
the next table (Ex: jump from CTX table of ‘ABC’ to ‘BC’ to search for ‘D’, and
if ‘D’ never shows up in context of any lengths, jump to uniform distribution).

As we observed more data, the probability distribution gets closer to the true
distribution, and probability of the escape symbol gets smaller.



Advantage of Using Neural Network over Trandition Method

Ability to Model Complex Data Distributions: Neural networks excel at learning non-linear and complex relationships in 
data. This allows them to model intricate dependencies that traditional methods may overlook.

Adaptability:Neural networks can generalize well across diverse datasets without requiring extensive manual adjustments. 
Traditional approaches often rely on domain-specific knowledge or assumptions that may not always hold.

Better Compression Ratios for High-Dimensional Data: High-dimensional data like images or audio benefit from neural 
networks' ability to extract and utilize latent structures effectively. This often leads to better compression ratios compared to traditional 
methods.

Integration with Modern Systems: Neural networks integrate easily with other machine learning tasks like feature extraction or 
prediction. This makes them ideal when compression is part of a larger automated system.



When Neural Networ is Needed for Compression

1. High Dimensional and Complex Data: Neural networks can model complex, 
high-dimensional data distributions better than traditional methods. For 
example

2. Nonlinear Dependencies: Neural networks excel at capturing nonlinear 
relationships.

3. High Compression Ratio: Neural network can achive high compression ratio 
for its learning capacity. If compression ratio is a more significant factor than 
compression speed, using Neural Network.



Dzip data compressor motivation

Types of model to estimate the conditional probability

➔ Static: 
● model first trained on some external training data and available to both the compressor and 

decompressor. 
● restricted to cases where similar training data available, not for general-purpose compression tasks.

➔ Adaptive:
● both the compressor and the decompressor initialized with the same random model, model updated 

adaptively based on the sequence seen up to some point; not require the availability of training data.

➔ Semi-adaptive: 
● model trained based only on input sequence, training procedure can involve multiple passes through 

the input data; trained model parameters and arithmetic coding output included in compressed file
● additional cost expected to compensate a better predictive model and smaller arithmetic coding 

output.

DZip: combines elements 
of semi-adaptive and 

adaptive approaches to 
achieve better prediction



Dzip training procedure



Dzip training procedure



Dzip inference procedure



Model architecture

Bootstrap model:  Achieve trade-off between model 
size and prediction capability.

● biGRU helps network learn long-term 
dependencies

● Dense layer is important for learning long-term 
relationships

Supporter model: The supporter model architecture is 
designed to adapt quickly and provide better 
probability estimates than the bootstrap model.

● The supporter model consists of three sub-NNs 
which act as independent predictors of varying 
complexity. The first sub-NN is linear, the 
second sub-NN has two dense layers and the 
third sub-NN uses residual blocks.

Convex Combination



Training process

First stage: reading the input file byte-by-byte and, based on the vocabulary size, 
automatically selecting the hyperparameters for the bootstrap and supporter 
models.

Second stage: training the bootstrap model by performing multiple passes through 
the sequence.

Third stage:

● Compression ratio: Frozen parameter of Boostrap model and update 
parameters in Supporter model.

● Encoding/decoding speed: Just use bootstrap model to compress.



Results

Model is tested on various 
type of data:

● Genomic data :h. 
chr1, h. chr20, c.e. 
genome, npbases 
np-quality, ill-quality

● Text: webster, text8, 
enwiki9.

● Executable files: 
mozilla.

● Double precision 
floating point data: 
num-control, obs-
spitzer, msg-bt. 

● Audio data: audio.Traditional compressors: Gzip, BSC and 7zip.
NN-based compressors: ZPAQ, LSTM Compress, NNCP, 
CMIX



Results

Combined model improves the compression by 0.072 bpc on the real datasets. DZip in 
bootstrap only mode still outperforms Gzip, 7zip, BSC and LSTM-Compress on most of 
the selected datasets, while being more practical due to its reduced running time.



Conclusion

Advantage: 

● DZip achieves improvements over Gzip, 7zip, BSC, ZPAQ and LSTM-
Compress.

● DZip also compares favorably with the state-of-the-art NN-based 
compressors CMIX and NNCP, achieving similar compression while being 
substantially faster.

Disadvantage:

● As a deep learning-based compression method, encoding/decoding is still 
time-consuming.



Appendix 



Example to show computation of loss


