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Introduction

● Say we are choosing pebbles from a bag, with only a 

couple of tries. 

● We choose one yellow pebble, and one green pebble.

● How do we estimate the true probability distribution? 

Image Credits: Bamboozle Math Games



How do we estimate the probability distribution?

● Naive Empirical: half green, half red 

● Laplace estimator: Addition of one to every possibility: 1 red, 2 green, 2 yellow

○ Other add constant estimators have taken a similar approach

○ This approach is weak when the number of possibilities is too large compared to sample 

size

● Alan Turing and I.J. Good had the same problem deciphering encrypted messages 

during WWII. (Good Turing Estimator!!)



Good Turing Estimator

● I.J. Good and Alan Turing had obtained the German Cipher Book wanted to 
apply the cipher book for a cryptanalysis to help decipher messages

● Derived the “Good Turing Estimator” 
○ Conceptually: “smooths” probability distribution and reallocating probability to rare events
○ Useful for small sample size, or many events with small possibilities 
○ Turing and Good had a small sample size of German intercepted ciphers

● Since publication, has had useful applications in information retrieval, spelling 
correction, speech recognition

Image Credits: Science Museum, Virginia Tech Science Magazine



Main Contributions

● This paper introduces a novel framework which can be used to evaluate 

probability estimators based on their attenuation

● The authors derive diminishing attenuation estimators, which approach 

optimal performance as there is an increase in samples

● They then evaluate the performance of all these estimators by bounding them 

as well as analyzing simple examples



Definitions

● Estimator - Assigns probability distribution to observed samples

● Patterns - abstract the sequence of observations, replaces each unique 

element with its order of first appearance. 

○ Ex: 

○ Denoted by  

● Probability of Patterns - the probability that a sequence generates a pattern 

when sampled from a distribution 

○ Ex: 



Definitions

● Maximum pattern probability:
○ Highest probability assigned to the pattern by any distribution.

○ Ex: Constant Distribution                                and Continuous Distribution                                 

● We denote a pattern                              and the number of distinct symbols 

appearing in the pattern 

● Sequential Estimators:
○ A mapping q that associates with every pattern        a probability distribution              over

○ Chain Rule:



Definitions

● Ex: Add-one estimator producing ‘1213’ 



Definitions

● Sequence attenuation of an estimator q for a pattern :

● Ex: Estimator     assigns a probability of 0.1 to pattern

○ True probability    assigns it 0.3 to pattern

○

○ ‘s probability for this pattern is three times smaller than the best possible probability 

distribution



Definitions
● Sequence attenuation of an estimator q for a pattern :

● worst-case sequence attenuation of q (largest sequence attenuation of q for any length-n pattern): 

● worst-case symbol attenuation of q for length-n patterns: 

● (asymptotic, worst-case, symbol) attenuation of q: 

● Diminishing attenuation estimator, as samples increase we approach optimal distribution estimation



A Preliminary Result

● multiplicity of ψ in       (number of times ψ appears in pattern): 

● prevalence of the multiplicity µ (number of symbols appearing µ times in pattern):   

● Example

For pattern       = 1213,               

: 1 appears twice, 2 and 3 each appear once                           

: 2 symbols including 2 and 3 appear once, 1 symbol including 1 appear 

twice



A Preliminary Result

Number of distinct patterns with prevalences             , … ,      :

where

Since maximum probability is achieved by having a distribution with the same probability, 



Unbounded- and Constant-Attenuation Estimators

Add-constant estimators have unbounded attenuation. 

A modified version of the add-one estimator and the Good-Turing 
estimator have constant, albeit non-diminishing, attenuations.



Add-One Estimator

Add-constant estimators have unbounded attenuation.

Theorem 1

Ex: For pattern 123…n,                                                                                                   (14.1)

since a string of positive integers is pattern iff the first appearance of any i ≥ 2 

occurs after that of i − 1

(14.2)

by using the fact      grows slower than (n+1)!

As n goes to infinity,              goes to infinity. 

Therefore, the attenuation of add one estimator is infinity so that unbounded.



Modified Add-one Estimator

The estimator uses the add-one rule to estimate the probability of the next symbol being new or repeated, 

and for repeated symbols it assigns a probability proportional to the number of occurrences of the symbol.

m: number of distinct symbols appearing in a pattern 

: multiplicity of ψ in       for 1 ≤ ψ ≤ m 

Then estimator assigns probability as :

(15.1)

If the next symbol has never been seen, define the probability as the add-one rule; if the next symbol has 

been seen from 1 to m, define the probability multiply the proportion of number of times of the symbol to 

length n. 



Modified Add-one Estimator

Theorem 2                                                                                        

Ex: pattern                                  estimator assigns probability              

(16.1)

by using Stirling’s approximation                               and approximate terms like   

n-1 to n for large n

uniform distribution over an alphabet of size 0.628n assigns to ψ the probability                   



Modified Add-one Estimator

sequence attenuation of any length-n pattern ψ with m distinct symbols is bounded by

Then try to maximize by m to let

(18.1)

By solving the equation above, we get n = 2m. Take this back to                , we have          .

Then the attenuation of estimator is bounded by 



Good-Turing Estimator

: number of        appearing in 

(19.1)

where     is a smoothed value                                       : simplest smoothing technique

(19.2)

try to ensure probability sum to 1



Good-Turing Estimator

Theorem 3

Ex: for the pattern                                                   ,                                                      .

Reason to choose this pattern: there are always some symbols appearing different times than others                        

by considering probability associate with pattern 132 with 3, 4, 6 possible                

values         

by having uniform distribution assign to ψ



Good-Turing Estimator

Upper bound

(21.1)

(21.2)

=                     <=                       /  (                                           )  

=      

Reason to separate to Rg and Rs: make calculation of upper bound much easier



Good-Turing Estimator

According to the definition, we observe that                                        (22.1)  

Place it into Rg, we could get                

Also, because                                      , 

Multiplying Rs and Rg together we could get upper bound 2.



Diminishing-attenuation Estimator



Estimator q

Probability 

distribution over 
sequences

To evaluate the performance of an estimator, We compare their sequence (symbol) attenuation.

Diminishing-attenuation Estimator

Diminish-attenuation estimator:

Per-symbol probability assigned by the estimator is asymptotically the best possible.



Diminishing-attenuation Estimator

Computationally more efficient 

(requires only a constant number of operations per symbol)

Attenuation approaches 1 more quickly



A Low Complexity Estimator



A Low Complexity Estimator



A Low Complexity Estimator



A Low Complexity Estimator
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A Low Attenuation Estimator
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A Low Attenuation Estimator



Lower Bound on Attenuation



Lower bound on attenuation

[4] Orlitsky, A., & Santhanam, N. P. (2003, March). Performance of universal codes over infinite alphabets. In Data Compression Conference, 2003. 

Proceedings. DCC 2003 (pp. 402-410). IEEE.

[5] Jevtić, N., Orlitsky, A., & Santhanam, N. P. (2005). A lower bound on compression of unknown alphabets. Theoretical compu ter science, 332(1-3), 

293-311.



● Consider the low complexity estimator          utilized for simple sequences

● Repeating Sequence ‘aaaa’
○ Estimates                  that the next symbol is ‘a’,            that it is new

● Alternating sequences ‘ababa…’
○ That it is new, splits remaining                 between ‘a’ and ‘b’ 

● Unique symbols ‘abcdef’
○ That the next symbol is new

● Doubled symbols ‘aabbcc…’
○ that the next symbol is new,         that the symbol is a preceding one

● The estimator generally aligns with one’s intuition for simple patterns

Performance Examples



Applications of Good Turing Estimation

● Distribution estimating in Machine Learning [6]
○ Good-Turing estimators is near optimal for discrete distributions

● Life sciences [7], [8]
○ Applied to estimate the unseen species in a habitat
○ Occurrence of genetic variants

● Language Processing [9]
○ Applied in speech recognition and computational linguistics

[6] Orlitsky, A., & Suresh, A. T. (2015). Competitive distribution estimation: Why is Good-Turing good. Advances in Neural Information Processing Systems (pp. 
2143-2151).
[7] Chao, A., & Lee, S. M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417), 210-217.

[8] Ionita-Laza, I., Lange, C., & Laird, N. M. (2009). Estimating the number of unseen variants in the human genome. Proceedings of the National Academy of 
Sciences, 106(13), 5008-5013.

[9] Gale, W. A., & Sampson, G. (1995). Good-Turing frequency estimation without tears. Journal of Quantitative Linguistics, 2(3), 217-237.



Conclusion 

● This paper introduces a novel framework which can be used to evaluate 

probability estimators based on their attenuation

● The authors derive diminishing attenuation estimators, which approach 

optimal performance as there is an increase 

● They then evaluate the performance of these estimators by bounding them as 

well as analyzing simple examples
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Thanks for Listening !
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