
Accelerating Convolutional
Neural Networks via Activation

Map Compression
Haozhe Si, Shuen Wu, Zhongweiyang Xu

Research Problem

● Model compression (save memory)
● Model acceleration (save memory and (Multiply and ACcumulate) MACS)

○ AlexNet: 720 MMACS 60M Params [1]
○ VGG16: 15 BMACS 138M Params [1]

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Preliminary: ConvNet Concepts + Activation

[1] Adapted from https://github.com/gwding/draw_convnet

[1] An example of ConvNet Structure

Background: Model Compression
Model weight compression:

● pruning, quantization, coding of weights

[1] Han, Song et al. “Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.”
arXiv: Computer Vision and Pattern Recognition (2015): n. pag.

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding.

Background: Model Compression
Model weight compression:

● pruning, quantization, coding of weights

[1] Han, Song et al. “Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.”
arXiv: Computer Vision and Pattern Recognition (2015): n. pag.

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman
coding.

[1] Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

Background: Model Compression

● However, hidden layer’s activation map is much larger than the weight
○ Inception-V3’s second layer [1]:

■ Input: 149 × 149 × 32
■ Output: 147 × 147 × 32
■ Total 1,401,920 values
■ Weight between: 32 × 32 × 3 × 3 = 9216

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Background: Model Compression
● hidden layer’s activation map is sparse

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018):
7078-7088.
[2]M. Rhu, M. O'Connor, N. Chatterjee, J. Pool, Y. Kwon and S. W. Keckler, "Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks," 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Vienna, Austria, 2018, pp. 78-91, doi: 10.1109/HPCA.2018.00017.
keywords: {Graphics processing units;Training;Feature extraction;Bandwidth;Neural networks;Resource management;Backpropagation;GPU;Compression},

[1] Figure 1. Percentage of non-zero activations (above)

[2] background: ZVC (zero value compression)

Layer number

Propose

● Learning sparser activation maps
● Quantization of activation maps
● Entropy coding of activation maps

Methodology: Sparsification

● Cost Function of vanilla CNN:
○ n: index of training samples
○ w: model weight
○ c: Cost function, e.g. cross-entropy loss
○ λ: Regularization strength
○ r: Regularization term, e.g. L2

■ Purpose of L2 regularization:
● Regularize on weight value
● Preventing overfitting by preventing over-rely on certain feature

Methodology: Sparsification

● Sparsifying the activation map:
○ Applying L1 Loss on the activations.

■ The new cost function:

■ l: layer index
■ : the activation of sample n at layer l
■ ɑ: L1 Loss strength, hyperparameter to tune.
■ y: Logits, the value before activation layer.

Methodology: Why L1 Loss Prompts Sparsity?

● L1 Loss:
● Gradient of L1 Loss with sub-gradient:

○ Case 1: Uniform Shrinkage:
■ The subgradient of L1 norm is constant (+1 or -1) for non-zero weights, shrinking all

weights linearly.
○ Case 2: Zero Lock-in Effect:

■ At zero, the subgradient allows any value in [-1, 1], meaning the optimizer has no strict
reason to move away from zero, promoting zero-valued weights.

● Compare to L2 Loss:
○ For L2 regularization, the penalty is , and its derivative is

■ Proportional to the weight’s size, so large weights shrink faster than small weights.
○ With L2 regularization, small weights shrink slowly and rarely reach zero. Instead, all weights

get smaller without any of them becoming exactly zero, leading to a dense solution.

Methodology: Sparsification

● Cost Function of vanilla CNN:
● Specification of the activation map is achieved by applying L1 Loss on the

activations.
○ The new cost function:

● Computing the gradient w.r.t x:

Methodology: Quantization

● The method then quantize floating point activation maps, , to q bits using
linear (uniform) quantization:

● Quantization is applied per-layer base.
○ and are selected from each layer.

● Quantization reduces the bit-width of these activation values:
○ A 32-bit floating-point activation map of size 64×64×128 requires:

■ 64×64×128×4 bytes≈2 MB
○ If quantized to 8-bit integers, the same activation map would take only:

■ 64×64×128×1 byte≈512 KB
○ This 4x reduction in memory allows efficient usage of memory resources.

● Reducing the bit-width results in reducing entropy.
● Reducing entropy leads to shorter average codelenght for lossless

compression.
● Side effect: Quantization introduces noise:

○ Help the model generalize better by preventing it from overfitting.
○ To learn more about Quantization-aware training: https://arxiv.org/pdf/1712.05877
○ To learn more about how noise helps model training: https://arxiv.org/abs/1909.03172

Methodology: Why Quantization?

https://arxiv.org/pdf/1712.05877

Methodology: Entropy Coding

● Purpose: Store sparse matrices while preserving fast arithmetic operations
● Problem: Common algorithms usually assume entire matrix available prior to

storage
● Need: Data is often streamed and computation done on-the-fly so we need

algorithm to encode one element at a time

Methodology: Golomb Coding

Computer Science Engineering Concepts. (2020, May 6). Golomb Coding. YouTube.

https://www.youtube.com/watch?v=eJQf55fwAE0

Methodology: Exponential-Golomb

● Separate successively sub-vectors of 2k, 2k+1, … binary zeros
● Encode rest of run-length as a binary number

Fig. from Jukka Teuhola. A compression method for clustered bit-vectors. Information processing letters, 1978.

Methodology: Exponential-Golomb

● Let s=run-length
● Step 1: Determine n such that
● Step 2: Form the prefix of n-k+1 1-bits
● Step 3: Insert the separator (0-bit)
● Step 4: Form the tail: express the value of as a binary number with

n+1 bits

Methodology: Exponential-Golomb

● Exponential-Golomb encoding is optimal when
1. The activation maps are mostly sparse
2. The first-order probability distribution of the activation maps have a long

tail (e.g. geometric distribution)
● In this case, we base things off an exponential number of zeros instead of

hardcoding due to the on-the-fly/streamed data that needs to be processed in
real time

● The authors of the paper chose to use exponential-golomb simply from
reading the histograms and suspecting the distributions were near geometric

Methodology: Sparse-exponential-Golomb

● Algorithm based on older exponential-Golomb algorithm
● Exponential-Golomb with k=0 parameter assigns a code word of length 1 for

x=0
● Unfortunately, if we use k>0, then x=0 is no longer 1 bit code word
● Solution: Dedicate '1' for x=0 and pre-append everything else with '0'

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Experiment: Acceleration

● Sparse: targeting at accuracy with sparsity
● Sparse_v2: targeting at high sparsity

Experiment: Acceleration

● Increasing sparsity can also increase accuracy.
● Hyperparameter need to be carefully selected.

Experiment: Acceleration

● Compare with previous SoTA model acceleration methods
● Sparse_v2 achieve better speed-up with a balance with of accuracy.

Experiment: Quantization

● Quantizing the model can achieve model compression will not affect the
model performance.

● Quantization can also increase the model performance in some cases.

Experiment: Compression

● Evaluation on compression gain and accuracy.
● SEG achieves the best compression rate with good accuracy.

Zlib: https://www.euccas.me/zlib/

Conclusion

● This paper proposed a three-stage compression and acceleration pipeline
that sparsifies, quantizes and encodes activation maps of CNN’s:

○ Sparsify:
■ Increases the number of zero values leading to model acceleration on specialized

hardware
○ Quantization and Encoding:

■ Contribute to compression by effectively utilizing the lower entropy of the sparser
activation maps

● Experiments demonstrate that the proposed pipeline effectively reduces the
computational and memory requirements while reaching good performance.

Limitations

● Sparse activation is effective, however, it only happens to CNN.
● In the age of Transformer, sparse attention map is more popular and the

compression methods are mainly quantization.
● However, similar techniques are still useful in infra-level:

○ Input compression
○ Checkpoint/gradient compression for speeding up training
○ Weight compression for speeding up inference

