Accelerating Convolutional
Neural Networks via Activation

Map Compression
Haozhe Si, Shuen Wu, Zhongweiyang Xu

Research Problem

e Model compression (save memory)

e Model acceleration (save memory and (Multiply and ACcumulate) MACS)
o AlexNet: 720 MMACS 60M Params [1]
o VGG16: 15 BMACS 138M Params [1]

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2079 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Preliminary: ConvNet Concepts + Activation

Feature Feature Feature Feature Hidden Hidden Hidden
Inputs maps maps maps maps units units units Outputs
l@28x28 32@24x24 32@13x13 64@9x9 64@7x7 3136 1024 512
Convolution Max-pooling Convolution Max-pooling Fatten Fully Fully Fully
5x5 kernel 2x2 kernel 5x5 kernel 2x2 kernel connected connected connected

[1] An example of ConvNet Structure

[1] Adapted from https://github.com/gwding/draw_convnet

Background: Model Compression

Model weight compression:

e pruning, quantization, coding of weights

Quantization: less bits per weight

Pruning: less number of weights A . Huffman Encoding
t ()
P oot e ek S e e e ~ \ o T - —— -~
¥ | [Cluster the Weights I ’ i
I () : : _ G J : : r ~ |
I | Train Connectivity 1 1 I : !
original |) | same ; (i | same | EREets Welptts | same
network 1 <>) ! aceuracy | Generate Code Book ,accuracy ;| 7/ |accuracy
! 1 J 1 1 |
E> || Prune Connections : I IT I E> L ug | E>
P I (1 I
or;?zlzal : G ngs J : 3x-1 3x i |Quantize the Weight " 27x-3:|x " Encode Index ! 35x-4?x
| & - |reduc |on: \with Code Book :reductmn ' § J :reductlon
I
- Train Weights | . L 2 : K TR .
(I J ! 1 X 1
‘. . | Retrain Code Book |
N - - - - - VoL /
\ 7/

e ——— -

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding.

[1] Han, Song et al. “Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.”
arXiv: Computer Vision and Pattern Recognition (2015): n. pag.

Background: Model Compression

Model weight compression:

e pruning, quantization, coding of weights

Pruning: less number of weights

’ \

[

! | Train Connectivity
original :
network 1

same

Quantization: less bits per weight
""""""" ~ Huffman Encoding

\
Cluster the Weights

1

'

¥ 1
original
size

9x-13x

1
1
Encode Weights | |
1
1
1
1

| 35x-49x

Quantize the Weights|

with Code Book

:reduction

\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

U

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman

coding.

weights cluster index
(32 bit float) (2 bit uint)

~ onE

cluster 1 1 0

=

fine-tuned
centroids centroids

reduce

[1] Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

[1] Han, Song et al. “Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.”
arXiv: Computer Vision and Pattern Recognition (2015): n. pag.

Background: Model Compression

e However, hidden layer’s activation map is much larger than the weight

o Inception-V3'’s second layer [1]:
m Input: 149 x 149 x 32
m Output: 147 x 147 x 32
m |Total 1,401,920 values
m |Weight between: 32 x 32 x 3 x 3 = 9216

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2079 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Background: Model Compression

[
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

hidden layer’s activation map is sparse

M Baseline M Sparse M Sparse v2

[1] Figure 1. Percentage oilnon-zero activations

Layer number

above)

Uncompressed
Data

0: zero
[: Non-zero

PRE
Mask 100110100001001000100000011000N

e

Compressed
Data

B: Mask
l: Non-zero

Figure 8: Zero-value compression.

[2] background: ZVC (zero value compression)

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018):
7078-7088.
[2]M. Rhu, M. O'Connor, N. Chatterjee, J. Pool, Y. Kwon and S. W. Keckler, "Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks," 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Vienna, Austria, 2018, pp. 78-91, doi: 10.1109/HPCA.2018.00017.
keywords: {Graphics processing units;Training;Feature extraction;Bandwidth;Neural networks;Resource management;Backpropagation;GPU;Compression},

Propose

e Learning|sparserjactivation maps
¢ [Quantization]of activation maps

e Entropy Eoding of activation maps

Methodology: Sparsification

1 N
e Cost Function of vanilla CNN: Eo(» —Nz_: w) + Awr(w),

n: index of training samples
w: model weight
c: Cost function, e.g. cross-entropy loss H(p,q) = - Y _p(z) logq(x
A: Regularization strength e
r. Regularization term, e.g. L2
m Purpose of L2 regularization:
e Regularize on weight value
e Preventing overfitting by preventing over-rely on certain feature

o O O O O

Methodology: Sparsification

e Sparsifying the activation map:
o Applying L1 Loss on the activations. % &
m The new costfunction: p(y) = Ey(w)+ ZZ ayl|zin|l1
n=11=0

N
= D w) + Aurw),
n=1

I: layer index
T1,n: the activation of sample n at layer /

a: L1 Loss strength, hyperparameter to tune.
y: Logits, the value before activation layer.

}’l X1 xl+k
Bc 6x,1

dxp1 0%

xll

x|y
ax,

Methodology: Why L1 Loss Prompts Sparsity?

e L1Loss: LFZ'“’@" 41 if 2, >0
. ! . . 0|z;| :

e Gradient of L1 Loss with sub-gradient: 3.-=9 -1 iz <0

[-1,1] ifaz;=0

o Case 1: Uniform Shrinkage:
m The subgradient of L1 norm is constant (+1 or -1) for non-zero weights, shrinking all
weights linearly.
o Case 2: Zero Lock-in Effect:
m At zero, the subgradient allows any value in [-1, 1], meaning the optimizer has no strict
reason to move away from zero, promoting zero-valued weights.

e Compare to L2 Loss:
o For L2 regularization, the penalty is w?, and its derivative is 2w;
m Proportional to the weight’s size, so large weights shrink faster than small weights.
o With L2 regularization, small weights shrink slowly and rarely reach zero. Instead, all weights
get smaller without any of them becoming exactly zero, leading to a dense solution.

Methodology: Sparsification

e Cost Function of vanilla CNN: Zo(w) = % ch + Awr(w
e Specification of the activation map is achleved by applylng L1 Loss on the
activations. LN
o The new cost functi(?n: E(w) = Ey(w)+ o Z Zal||$l,n||1
e Computing the gradient w.r.t x: n=11=0

oc! 0|z
;L = ” l;-n”l = —Qy, if 7 <0
&El,n axl,n

Methodology: Quantization

e The method then quantize floating point activation maps, z;, to g bits using

linear (uniform) quantization: .
quant L1 — x;mn
l T ,.max min
Ty — I

x (29 —1),

e Quantization is applied per-layer base.

o 2" and ;""" are selected from each layer.

Methodology: Why Quantization?

e (Quantization reduces the bit-width of these activation values:

o A 32-bit floating-point activation map of size 64x64x128 requires:
m 64x64x128x4 bytes=2 MB
o If quantized to 8-bit integers, the same activation map would take only:
m 64x64x128x1 byte=512 KB
o This 4x reduction in memory allows efficient usage of memory resources.

e Reducing the bit-width results in reducing entropy.
e Reducing entropy leads to shorter average codelenght for lossless
compression.

e Side effect: Quantization introduces noise:
o Help the model generalize better by preventing it from overfitting.
o To learn more about Quantization-aware training: https://arxiv.org/pdf/1712.05877
o To learn more about how noise helps model training: https://arxiv.org/abs/1909.03172

https://arxiv.org/pdf/1712.05877

Methodology: Entropy Coding

e Purpose: Store sparse matrices while preserving fast arithmetic operations
e Problem: Common algorithms usually assume entire matrix available prior to

storage
e Need: Data is often streamed and computation done on-the-fly so we need

algorithm to encode one element at a time

Methodology: Golomb Coding

Given a nonnegative integer » and a positive integer divisor m > 0,

the Golomb code of » with respect to m, denoted G, (), constructed

m

as follows:

Step 1. Form the unary code of quotient Ln / mJ

(The unary code of integer g is defined as ¢ 1s followed by a 0)
Step2. Let k=[log2 m—l,c =2 —m,r = nmod m,and compute truncated
remainder 7' such that

7 truncated to k-1 bits 0<r<c
r +c¢ truncated to k bits otherwise

r'=

Step 3. Concatenate the results of steps 1 and 2.
Computer Science Engineering Concepts. (2020, May 6). Golomb Coding. YouTube.

https://www.youtube.com/watch?v=eJQf55fwAEQ

Methodology: Exponential-Golomb

e Separate successively sub-vectors of 2k, 2*1 ... binary zeros
e Encode rest of run-length as a binary number

Run
0})000)})000000&90200}10 & w6t
2k 2k""| 2V
\\\‘ ‘l ‘(////it

11100501
v...l\—(__-l

.Prefix The rest of the run-length
represented as a binary
Separator number of k+3 bits (=tail)

Fig. 2. An example of the exp-Golomb code (here k = 1).
Fig. from Jukka Teuhola. A compression method for clustered bit-vectors. Information processing letters, 1978.

Methodology: Exponential-Golomb

Let s=run-length 0 ntl

Step 1: Determine n such that Z b ;
Step 2: Form the prefix of n—k+1 1 -bits

Step 3: Insert the separator (0-bit)

Step 4: Form the tail: express the value of °
n+1 bits

n

_Zgi

i=k

as a binary number with

Methodology: Exponential-Golomb

e Exponential-Golomb encoding is optimal when

1. The activation maps are mostly sparse

2. The first-order probability distribution of the activation maps have a long
tail (e.g. geometric distribution)

In this case, we base things off an exponential number of zeros instead of

hardcoding due to the on-the-fly/streamed data that needs to be processed in

real time
e The authors of the paper chose to use exponential-golomb simply from

reading the histograms and suspecting the distributions were near geometric

Methodology: Sparse-exponential-Golomb

e Algorithm based on older exponential-Golomb algorithm

e Exponential-Golomb with k=0 parameter assigns a code word of length 1 for
x=0

e Unfortunately, if we use k>0, then x=0 is no longer 1 bit code word

e Solution: Dedicate '1' for x=0 and pre-append everything else with '0'

Algorithm 1 Sparse-exponential-Golomb

Input: Non-negative integer x, Order k
Output: Bitstream y
function encode_sparse_exp_Golomb (z, k)

{

If.k==10:
y = encode_exp_Golomb(z, k)
Else:
Ifz==0:
Lety = ‘1’
Else:
Let y = ‘0" + encode_exp_Golomb(z — 1, k)
Return y

}

Input: Bitstream z, Order k
Output: Non-negative integer y
function decode_sparse_exp_Golomb (z, k)
{
Ifki==0;
y = decode_exp_Golomb(z, k)
Else:
Hz[0] == “I":
Lety =0
Else:
Let y = 1 + decode_exp_Golomb(z[1: |, k)
Return y

}

[1] Georgiadis, Georgios. “Accelerating Convolutional Neural Networks via Activation Map Compression.” 2079 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Experiment: Acceleration

Dataset \ Model Variant Top-1 Acc. Top-5 Acc. Acts. (%) Speed-up
line 98.45% 2 53.73% 10x

MNIST LeNetS [T sparse 98.48% (+0.03%) - 2316% 2.32x |
) line 29 17% N 47 44% 10x

CIFAR-10 | MoblleNet- VI [*'qrse 89.719% (+0.54%) . 2954% 1.61x |
Baseline 75.76% 92.74% 53.78% 1.0x
Inception-V3 [Sparse 76.14% (+0.38%) 92.83% (+0.09%) 33.66% 1.60x
Sparse_v2 68.94% (-6.82%) 88.52% (-4.22%) 25.34% 2.12x
_Raseline 69 64% 28.99% 60 64% 10x
ImageNet | ResNet-18 Sparse 69.85% (+0.21%) 89.27% (+0.28%) 49.51% 1.22x
Sparse_v2 _ 68.62% (-1.02%) _ 88.41% (:0.58%) 34.29% 177
Baseline 73.26% 91.43% 57.44% 1.0x
ResNet-34 Sparse 73.95%(+0.69%) 91.61% (+0.18%) 46.85% 1.23x
Sparse_v2 67.73% (-5.53%) 87.93% (-3.50%) 29.62% 1.94x

Table 2. Accelerating neural networks via sparsification. Numbers 1n brackets indicate change in accuracy. Acts. (‘-%7) shows the percentage
of non-zero activations.

e Sparse: targeting at accuracy with sparsity
e Sparse v2:targeting at high sparsity

E(w)

|
Eo(w) Nz::

>l

Experiment: Acceleration

Dataset \ Model Variant Top-1 Acc. Top-5 Acc. Acts. (%) Speed-up
line 98.45% 2 53.73% 10x

MRIST LeNetS [T sparse 98.48% (+0.03%) - 2316% 2.32x |
) line 29 17% N 47 44% 10x

CIFAR-10 | MoblleNet- VI [*'qrse 89.719% (+0.54%) . 2954% 1.61x |
Baseline 75.76% 92.74% 53.78% 1.0x
Inception-V3 [Sparse 76.14% (+0.38%) 92.83% (+0.09%) 33.66% 1.60x
Sparse_v2 68.94% (-6.82%) 88.52% (-4.22%) 25.34% 2.12x
_Raseline 69 64% 28.99% 60 64% 10x
ImageNet | ResNet-18 Sparse 69.85% (+0.21%) 89.27% (+0.28%) 49.51% 1.22x
Sparse_v2 _ 68.62% (-1.02%) _ 88.41% (:0.58%) 34.29% 177
Baseline 73.26% 91.43% 57.44% 1.0x
ResNet-34 Sparse 73.95%(+0.69%) 91.61% (+0.18%) 46.85% 1.23x
Sparse_v2 67.73% (-5.53%) 87.93% (-3.50%) 29.62% 1.94x

Table 2. Accelerating neural networks via sparsification. Numbers 1n brackets indicate change in accuracy. Acts. (‘-%7) shows the percentage

of non-zero activations.

e Increasing sparsity can also increase accuracy.
e Hyperparameter need to be carefully selected.

Experiment: Acceleration

Network ‘ Algorithm Top-1 Acc. Change Top-5 Acc. Change Speed-up
Ours (Sparse) +0.21% +0.28% 18.4%

Ours (Sparse_v2) -1.02% -0.58 % 43.5% |
ResNet-18 LCCL [L1] -3.65% -2.30% 34.6%
BWN [2(] -8.50% -6.20% 50.0%
XNOR [20] -18.10% -16.00% 98.3%
Ours (Sparse) +0.69% +0.18% 18.4%

Ours (Sparse_v2) -5.53% -3.50% 48.4% |
ResNet-34 1= L.CCL [10] 20.43% 20.17% 24.8%
PFEC [11] -1.06% - 24.2%
Ours (Sparse) +0.03 % - 56.9 %
LeNet-5 L p=70%) -0.12% - 7.3%
[12] (p = 80%) -0.57% - 14.7%

e Compare with previous SoTA model acceleration methods
e Sparse v2 achieve better speed-up with a balance with of accuracy.

Experiment: Quantization

Model | Variant | Measurement | float32 uint16 uint12 uint8
Baseline | ToP-1 Acc. 98.45% 98.44% (-0.01%) 98.44% (-0.01%) 98.39% (-0.06%)
LeNet-5 Compression - 3.40% (1.70x) 4.40x (1.64%) 6.32x (1.58%)
(MNIST) Soarse | ToP-TAcc. | 98.48% (+0.03%) 98.48% (+0.03%) 98.49% (+0.04%)
P Compression B 6.76x (3.38x) 843x (3.16x) [11.16x (2.79%)
Baseline | TPl Acc. 89.17% 89.18% (+0.01%) 89.15% (-0.02%) 89.16% (-0.01%)
MobiletNet-V1 Compression - 5.52x (2.76x) 7.09% (2.66x%) 9.76x (2.44x)
(CIFAR-10) Soarse | TOPLAce. | 89.71% (+0.54%) 89.72% (+0.55%) 87.72 (+0.55%)
P Compression = 5.84x 2.92x) 7.33x (279%) || 10.24x (2.56x)

Table 5. Effect of quantization on compression on SEG. LeNet-5
is compressed by 11 x and MobileNet-V1 by 10x. In brackets, we
report change in accuracy and compression gain over the float32
baseline.

e Quantizing the model can achieve model compression will not affect the
model performance.
e (Quantization can also increase the model performance in some cases.

Experiment: Compression

Dataset | Model Variant Bits Top-1 Acc. Top-5 Acc. SEG EG[o1] HC[] ZvVC[1] ZLIB []
Baseline float32 98.45% - - - = = -
MNIST LeNet-5 Baseline uintl6 98.44% (-0.01%) - 340x (1.70x) §2.30x (1.15x) 2.10x (1.05x) 3.34x (1.67x) 242x (1.21x)
Sparse 98.48% (+0.03%) - 6.76x (3.38x) J4.54x (227x) 3.76x (1.88x) 6.74x (3.37x) 3.54x (1.77x)
Baseline float32 89.17% - - - - - -
CIFAR-10 | MobileNet-V1 Baseline uintl6 89.18% (+0.01%) - 5.52x (2.76x) [3.70x (1.85x) 2.90x (1.45x) 532x (2.66x) 3.76x (1.88x)
Sparse 89.72% (+0.55%) - 5.84x (2.92x) J3.90x (1.95%) 3.00x (1.50x) 5.58x (2.79%x) 3.90x (1.95x)
Baseline float32 75.76% 92.74% - - - - -
TiceotionaVa Baseline 75.75% (-0.01%) 92.74% (+0.00%) J 3.56x (1.78x) [2.42x(1.21x) 2.66x (1.33x) 3.34x (1.67x) 2.66x (1.33x)
P Sparse uintl6 76.12% (+0.36%) 92.83% (+0.09%) J 5.80x (2.90x) J§4.10x (2.05x) 4.22x (2.11x) 5.02x (2.51x) 3.98x (1.99x)
Sparse_v2 68.96% (-6.80%) 88.54% (-4.20%) 6.86x (3.43x) [5.12x (2.56x) 5.12x (2.56x) 6.36x (3.18x) 4.90x (2.45%)
Baseline float32 69.64% 88.99% - - - - -
ImageNet ResNet-18 Baseline 69.64% (+0.00%) 88.99% (+0.00%) f§f 3.22x (1.61x) J2.32x (1.16x) 2.54x (1.27x) 3.00x (1.50x) 2.32x (1.16x)
Sparse uintl6 69.85% (+0.21%) 89.27% (+0.28%) J 4.00x (2.00x) §2.70x (1.35x) 3.04x (1.52x) 3.60x (1.80x) 2.68x (1.34x)
Sparse_v2 68.62% (-1.02%) 88.41% (-0.58%) 5.54x (2.77x) J3.80x (1.90x) 4.02x (201x) 4.94x (247x) 3.54x (1.77x)
Baseline float32 73.26% 91.43% - - - - -
ResNet-34 Baseline 73.27% (+0.01%) 91.43% (+0.00%) § 3.38x (1.69x) [f2.38x (1.19x) 2.56x (1.28x) 3.14x (1.57x) 2.46x (1.23x)
Sparse uintl6 73.96% (+0.70%) 91.61% (+0.18%) J 4.18x (2.09x) J2.84x (1.42x) 3.04x (1.52x) 3.78x (1.89x) 2.84x (1.42x)
Sparse_v2 67.74% (-5.52%) 87.90% (-3.53%) 6.26x (3.13x) f4.38%x (2.19%x) 432X (2.16x) 558x (2.79x) 4.02x (2.01x)

Table 6. Compressing activation maps. We report the Top-1/Top-5 accuraCy, with the numbers in brackets indicating the change in accuracy.
The total compression gain is reported for various state-of-the-art algorithms (in brackets we also report the compression gain without
including gains from quantization). SEG outperforms other state-of-the-art algorithms in all models and datasets.

e Evaluation on compression gain and accuracy.
e SEG achieves the best compression rate with good accuracy.

Zlib: https://lwww.euccas.me/zlib/

Conclusion

e This paper proposed a three-stage compression and acceleration pipeline
that sparsifies, quantizes and encodes activation maps of CNN’s:

o Sparsify:
m Increases the number of zero values leading to model acceleration on specialized
hardware

o Quantization and Encoding:
m Contribute to compression by effectively utilizing the lower entropy of the sparser
activation maps

e Experiments demonstrate that the proposed pipeline effectively reduces the
computational and memory requirements while reaching good performance.

Limitations

e Sparse activation is effective, however, it only happens to CNN.
e In the age of Transformer, sparse attention map is more popular and the
compression methods are mainly quantization.

e However, similar techniques are still useful in infra-level:
o Input compression
o Checkpoint/gradient compression for speeding up training
o Weight compression for speeding up inference

