Accelerating Convolutional Neural Networks via Activation Map Compression

Haozhe Si, Shuen Wu, Zhongweiyang Xu

Research Problem

- Model compression (save memory)
- Model acceleration (save memory and (Multiply and ACcumulate) MACS)
 - AlexNet: 720 MMACS 60M Params [1]
 - VGG16: 15 BMACS 138M Params [1]

[1] Georgiadis, Georgios. "Accelerating Convolutional Neural Networks via Activation Map Compression." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Preliminary: ConvNet Concepts + Activation

[1] An example of ConvNet Structure

[1] Adapted from https://github.com/gwding/draw_convnet

Model weight compression:

• pruning, quantization, coding of weights

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. [1] Han, Song et al. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." arXiv: Computer Vision and Pattern Recognition (2015): n. pag.

Model weight compression:

• pruning, quantization, coding of weights

[1] Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding.

[1] Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

[1] Han, Song et al. "Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding." *arXiv: Computer Vision and Pattern Recognition* (2015): n. pag.

- However, hidden layer's activation map is much larger than the weight
 - Inception-V3's second layer [1]:
 - Input: 149 × 149 × 32
 - Output: 147 × 147 × 32
 - Total 1,401,920 values
 - Weight between: 32 × 32 × 3 × 3 = 9216

[1] Georgiadis, Georgios. "Accelerating Convolutional Neural Networks via Activation Map Compression." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

• hidden layer's activation map is sparse

[1] Georgiadis, Georgios. "Accelerating Convolutional Neural Networks via Activation Map Compression." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

[2]M. Rhu, M. O'Connor, N. Chatterjee, J. Pool, Y. Kwon and S. W. Keckler, "Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks," 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 2018, pp. 78-91, doi: 10.1109/HPCA.2018.00017.

keywords: {Graphics processing units;Training;Feature extraction;Bandwidth;Neural networks;Resource management;Backpropagation;GPU;Compression},

Propose

- Learning sparser activation maps
- Quantization of activation maps
- Entropy coding of activation maps

Methodology: Sparsification

- Cost Function of vanilla CNN: $E_0(w) = \frac{1}{N} \sum_{n=1}^N c_n(w) + \lambda_w r(w),$
 - *n*: index of training samples
 - w: model weight
 - *c*: Cost function, e.g. cross-entropy loss $H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x)$.
 - \circ λ : Regularization strength
 - *r*: Regularization term, e.g. L2
 - Purpose of L2 regularization:
 - Regularize on weight value
 - Preventing overfitting by preventing over-rely on certain feature

Methodology: Sparsification

- Sparsifying the activation map:
 - Applying L1 Loss on the activations.

• The new cost function:
$$E(w) = E_0(w) + \frac{1}{N} \sum_{n=1}^{N} \sum_{l=0}^{L} \alpha_l \|x_{l,n}\|_1$$

$$= rac{1}{N}\sum_{n=1}^N c_n'(w) + \lambda_w r(w),$$

N T

- *I*: layer index
- x_{l,n}: the activation of sample n at layer l
- *a*: L1 Loss strength, hyperparameter to tune.
- y: Logits, the value before activation layer.

Methodology: Why L1 Loss Prompts Sparsity?

- - Case 1: Uniform Shrinkage:
 - The subgradient of L1 norm is constant (+1 or -1) for non-zero weights, shrinking all weights linearly.
 - Case 2: Zero Lock-in Effect: 0
 - At zero, the subgradient allows any value in [-1, 1], meaning the optimizer has no strict reason to move away from zero, promoting zero-valued weights.
- Compare to L2 Loss:
 - For L2 regularization, the penalty is w_i^2 , and its derivative is $2w_j$ 0
 - Proportional to the weight's size, so large weights shrink faster than small weights.
 - With L2 regularization, small weights shrink slowly and rarely reach zero. Instead, all weights Ο get smaller without any of them becoming exactly zero, leading to a dense solution.

• L1 Loss: $L_1 = \sum_i |x_i|$ • Gradient of L1 Loss with sub-gradient: $\frac{\partial |x_i|}{\partial x_i} = \begin{cases} +1 & \text{if } x_i > 0 \\ -1 & \text{if } x_i < 0 \\ [-1, 1] & \text{if } x_i = 0 \end{cases}$

Methodology: Sparsification

- Cost Function of vanilla CNN: $E_0(w) = \frac{1}{N} \sum_{n=1}^{N} c_n(w) + \lambda_w r(w),$
- Specification of the activation map is achieved by applying L1 Loss on the activations. N L
 - The new cost function: $E(w) = E_0(w) + \frac{1}{N} \sum_{l=0}^{N} \sum_{l=0}^{L} \alpha_l \|x_{l,n}\|_1$
- Computing the gradient w.r.t *x*:

$$\frac{\partial c'_n}{\partial x^j_{l,n}} = \alpha_l \frac{\partial \|x_{l,n}\|_1}{\partial x^j_{l,n}} = \begin{cases} +\alpha_l, & \text{ if } x^j_{l,n} > 0\\ -\alpha_l, & \text{ if } x^j_{l,n} < 0\\ 0, & \text{ if } x^j_{l,n} = 0 \end{cases}$$

Methodology: Quantization

• The method then quantize floating point activation maps, x_l , to q bits using linear (uniform) quantization:

$$x_l^{\mathrm{quant}} = rac{x_l - x_l^{\mathrm{min}}}{x_l^{\mathrm{max}} - x_l^{\mathrm{min}}} imes (2^q - 1),$$

• Quantization is applied per-layer base. $\circ x_l^{min}$ and x_l^{max} are selected from each layer.

Methodology: Why Quantization?

- Quantization reduces the bit-width of these activation values:
 - A 32-bit floating-point activation map of size 64×64×128 requires:
 - 64×64×128×4 bytes≈2 MB
 - If quantized to 8-bit integers, the same activation map would take only:
 - 64×64×128×1 byte≈512 KB
 - This 4x reduction in memory allows efficient usage of memory resources.
- Reducing the bit-width results in reducing entropy.
- Reducing entropy leads to shorter average codelenght for lossless compression.
- Side effect: Quantization introduces noise:
 - Help the model generalize better by preventing it from overfitting.
 - To learn more about Quantization-aware training: <u>https://arxiv.org/pdf/1712.05877</u>
 - To learn more about how noise helps model training: https://arxiv.org/abs/1909.03172

Methodology: Entropy Coding

- Purpose: Store sparse matrices while preserving fast arithmetic operations
- Problem: Common algorithms usually assume entire matrix available prior to storage
- Need: Data is often streamed and computation done on-the-fly so we need algorithm to encode one element at a time

Methodology: Golomb Coding

Given a nonnegative integer *n* and a positive integer divisor m > 0, the Golomb code of *n* with respect to *m*, denoted $G_m(n)$, constructed as follows:

Step 1. Form the unary code of quotient $\lfloor n/m \rfloor$ (The unary code of integer q is defined as q 1s followed by a 0) Step2. Let $k = \lceil \log_2 m \rceil, c = 2^k - m, r = n \mod m$, and compute truncated remainder r' such that $r' = \begin{cases} r \text{ truncated to } k - 1 \text{ bits } 0 \le r < c \\ r+c \text{ truncated to } k \text{ bits } \text{ otherwise} \end{cases}$

Step 3. Concatenate the results of steps 1 and 2.

Computer Science Engineering Concepts. (2020, May 6). Golomb Coding. YouTube.

https://www.youtube.com/watch?v=eJQf55fwAE0

Methodology: Exponential-Golomb

- Separate successively sub-vectors of 2^k, 2^{k+1}, ... binary zeros
- Encode rest of run-length as a binary number

Fig. from Jukka Teuhola. A compression method for clustered bit-vectors. Information processing letters, 1978.

Methodology: Exponential-Golomb

- Let s=run-length
- Step 1: Determine n such that $\sum_{i=k}^{n} 2^{i} \le s \le \sum_{i=k}^{n+1} 2^{i}$
- Step 2: Form the prefix of n-k+1 1-bits
- Step 3: Insert the separator (0-bit)
- Step 4: Form the tail: express the value of $s \sum_{i=1}^{k} 2^{i}$ as a binary number with n+1 bits

Methodology: Exponential-Golomb

- Exponential-Golomb encoding is optimal when
 - 1. The activation maps are mostly sparse
 - 2. The first-order probability distribution of the activation maps have a long tail (e.g. geometric distribution)
- In this case, we base things off an exponential number of zeros instead of hardcoding due to the on-the-fly/streamed data that needs to be processed in real time
- The authors of the paper chose to use exponential-golomb simply from reading the histograms and suspecting the distributions were near geometric

Methodology: Sparse-exponential-Golomb

- Algorithm based on older exponential-Golomb algorithm
- Exponential-Golomb with k=0 parameter assigns a code word of length 1 for x=0
- Unfortunately, if we use k>0, then x=0 is no longer 1 bit code word
- Solution: Dedicate '1' for x=0 and pre-append everything else with '0'

```
Algorithm 1 Sparse-exponential-Golomb
Input: Non-negative integer x, Order k
Output: Bitstream y
function encode_sparse_exp_Golomb (x, k)
  If k == 0:
     y = \text{encode}_\exp_\text{Golomb}(x, k)
  Else:
     If x == 0:
          Let y = 1
     Else:
          Let y = 0' + \text{encode exp Golomb}(x - 1, k)
  Return y
Input: Bitstream x, Order k
Output: Non-negative integer y
function decode_sparse_exp_Golomb (x, k)
  If k == 0:
     y = \text{decode}_{\exp}_{\text{Golomb}}(x, k)
  Else:
     If x[0] == '1':
          Let y = 0
     Else:
          Let y = 1 + \text{decode}_exp_Golomb(x[1:], k)
  Return y
```

[1] Georgiadis, Georgios. "Accelerating Convolutional Neural Networks via Activation Map Compression." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018): 7078-7088.

Experiment: Acceleration

Dataset	Dataset Model		Top-1 Acc.	Top-5 Acc.	Acts. (%)	Speed-up
MALIOT	L -N-4 F	Baseline	98.45%	-	53.73%	1.0×
MNIST	Leinet-5	Sparse	98.48% (+0.03%)	-	23.16%	2.32 ×
CIFAR-10	MahilaNat X1	Baseline	89.17%	-	47,44%	1.0×
	Modifience-vi	Sparse	89.71% (+0.54%)	-	29.54%	1.61 ×
		Baseline	75.76%	92.74%	53.78%	1.0×
	Inception-V3	Sparse	76.14% (+0.38%)	92.83% (+0.09%)	33.66%	$1.60 \times$
		Sparse_v2	68.94% (-6.82%)	88.52% (-4.22%)	25.34%	2.12 ×
		Baseline	69.64%	88,99%	60.64%	1.0×
ImageNet	ResNet-18	Sparse	69.85% (+0.21%)	89.27% (+0.28%)	49.51%	$1.22 \times$
0		Sparse_v2	68.62% (-1.02%)	88.41% (-0.58%)	34.29%	1.77×
		Baseline	73.26%	91.43%	57.44%	1.0×
	ResNet-34	Sparse	73.95%(+0.69%)	91.61% (+0.18%)	46.85%	$1.23 \times$
		Sparse_v2	67.73% (-5.53%)	87.93% (-3.50%)	29.62%	1.94×

Table 2. Accelerating neural networks via sparsification. Numbers in brackets indicate change in accuracy. Acts. (%) shows the percentage of non-zero activations.

- Sparse: targeting at accuracy with sparsity
- Sparse_v2: targeting at high sparsity

$$E(w) = E_0(w) + rac{1}{N} \sum_{n=1}^N \sum_{l=0}^L lpha_l \|x_{l,n}\|_1$$

Experiment: Acceleration

Dataset	Dataset Model		Top-1 Acc.	Top-5 Acc.	Acts. (%)	Speed-up
MALIOT	L -N-4 F	Baseline	98.45%	-	53.73%	1.0×
MINIS I	Lenet-5	Sparse	98.48% (+0.03%)	-	23.16%	2.32 ×
CIFAR-10	MahilaNat X1	Baseline	89.17%	-	47.44%	1.0×
	Modiferet-vi	Sparse	89.71% (+0.54%)	-	29.54%	1.61 ×
		Baseline	75.76%	92.74%	53.78%	1.0×
	Inception-V3	Sparse	76.14% (+0.38%)	92.83% (+0.09%)	33.66%	$1.60 \times$
		Sparse_v2	68.94% (-6.82%)	88.52% (-4.22%)	25.34%	2.12 imes
		Baseline	69.64%	88,99%	60.64%	1.0×
ImageNet	ResNet-18	Sparse	69.85% (+0.21%)	89.27% (+0.28%)	49.51%	$1.22 \times$
0		Sparse_v2	68.62% (-1.02%)	88.41% (-0.58%)	34.29%	1.77 ×
		Baseline	73.26%	91.43%	57.44%	1.0×
	ResNet-34	Sparse	73.95%(+0.69%)	91.61% (+0.18%)	46.85%	$1.23 \times$
		Sparse_v2	67.73% (-5.53%)	87.93% (-3.50%)	29.62%	1.94 ×

Table 2. Accelerating neural networks via sparsification. Numbers in brackets indicate change in accuracy. Acts. (%) shows the percentage of non-zero activations.

- Increasing sparsity can also increase accuracy.
- Hyperparameter need to be carefully selected.

Experiment: Acceleration

Network	Algorithm	Top-1 Acc. Change	Top-5 Acc. Change	Speed-up
5	Ours (Sparse)	+0.21%	+0.28%	18.4%
	Ours (Sparse_v2)	-1.02%	-0.58%	43.5%
ResNet-18	LCCL [10]	-3.65%	-2.30%	34.6%
	BWN <u>[50]</u>	-8.50%	-6.20%	50.0%
	XNOR [50]	-18.10%	-16.00%	98.3%
	Ours (Sparse)	+0.69%	+0.18%	18.4%
PorNet 24	Ours (Sparse_v2)	-5.53%	-3.50%	48.4 %
Residel-34	LCCL [10]	-0.43%	-0.17%	24.8%
	PFEC [36]	-1.06%	-	24.2%
8	Ours (Sparse)	+0.03%	-	56.9%
LeNet-5	[18] $(p = 70\%)$	-0.12%	-	7.3%
	[18] (p = 80%)	-0.57%	-	14.7%

- Compare with previous SoTA model acceleration methods
- Sparse_v2 achieve better speed-up with a balance with of accuracy.

Experiment: Quantization

Model Variant Measur		Measurement	float32 uint16		uint12	uint8	
LeNet-5 (MNIST)	Baseline	Top-1 Acc. Compression	98.45%	98.44% (-0.01%) 3.40× (1.70×)	98.44% (-0.01%) 4.40× (1.64×)	98.39% (-0.06%) 6.32× (1.58×)	
	Sparse	Top-1 Acc. Compression	98.48% (+0.03%)	98.48% (+0.03%) 6.76× (3.38×)	98.49% (+0.04%) 8.43× (3.16×)	98.46% (+0.01%) 11.16× (2.79×)	
MobiletNet-V1 (CIFAR-10)	Baseline	Top-1 Acc. Compression	89.17% -	89.18% (+0.01%) 5.52× (2.76×)	89.15% (-0.02%) 7.09× (2.66×)	89.16% (-0.01%) 9.76× (2.44×)	
	Sparse	Top-1 Acc. Compression	89.71% (+0.54%) -	89.72% (+0.55%) 5.84× (2.92×)	87.72 (+0.55%) 7.33× (2.79×)	89.62% (+0.45%) 10.24× (2.56×)	

Table 5. Effect of quantization on compression on SEG. LeNet-5 is compressed by $11 \times$ and MobileNet-V1 by $10 \times$. In brackets, we report change in accuracy and compression gain over the float32 baseline.

- Quantizing the model can achieve model compression will not affect the model performance.
- Quantization can also increase the model performance in some cases.

Experiment: Compression

Dataset	Model	Variant	Bits	Top-1 Acc.	Top-5 Acc.	SEG	EG [61]	HC [18]	ZVC [52]	ZLIB [1]
MNIST	LeNet-5	Baseline Baseline Sparse	float32 uint16	98.45% 98.44% (-0.01%) 98.48% (+0.03%)	-	3.40× (1.70×) 6.76× (3.38×)	2.30× (1.15×) 4.54× (2.27×)	2.10× (1.05×) 3.76× (1.88×)	3.34× (1.67×) 6.74× (3.37×)	2.42× (1.21×) 3.54× (1.77×)
CIFAR-10	MobileNet-V1	Baseline Baseline Sparse	float32 uint16	89.17% 89.18% (+0.01%) 89.72% (+0.55%)	-	5.52× (2.76×) 5.84× (2.92×)	3.70×(1.85×) 3.90×(1.95×)	2.90×(1.45×) 3.00×(1.50×)	5.32× (2.66×) 5.58× (2.79×)	3.76× (1.88×) 3.90× (1.95×)
ImageNet	Inception-V3	Baseline Baseline Sparse Sparse_v2	float32 uint16	75.76% 75.75% (-0.01%) 76.12% (+0.36%) 68.96% (-6.80%)	92.74% 92.74% (+0.00%) 92.83% (+0.09%) 88.54% (-4.20%)	3.56× (1.78×) 5.80× (2.90×) 6.86× (3.43×)	- 2.42×(1.21×) 4.10×(2.05×) 5.12×(2.56×)	$2.66 \times (1.33 \times)$ $4.22 \times (2.11 \times)$ $5.12 \times (2.56 \times)$	$3.34 \times (1.67 \times)$ $5.02 \times (2.51 \times)$ $6.36 \times (3.18 \times)$	2.66× (1.33×) 3.98× (1.99×) 4.90× (2.45×)
	ResNet-18	Baseline Baseline Sparse Sparse_v2	float32 uint16	69.64% 69.64% (+0.00%) 69.85% (+0.21%) 68.62% (-1.02%)	88.99% 88.99% (+0.00%) 89.27% (+0.28%) 88.41% (-0.58%)	3.22×(1.61×) 4.00×(2.00×) 5.54×(2.77×)	2.32× (1.16×) 2.70× (1.35×) 3.80× (1.90×)	2.54×(1.27×) 3.04×(1.52×) 4.02×(2.01×)	3.00×(1.50×) 3.60×(1.80×) 4.94×(2.47×)	2.32×(1.16×) 2.68×(1.34×) 3.54×(1.77×)
	ResNet-34	Baseline Baseline Sparse Sparse_v2	float32 uint16	73.26% 73.27% (+0.01%) 73.96% (+0.70%) 67.74% (-5.52%)	91.43% 91.43% (+0.00%) 91.61% (+0.18%) 87.90% (-3.53%)	3.38× (1.69×) 4.18× (2.09×) 6.26× (3.13×)	2.38×(1.19×) 2.84×(1.42×) 4.38×(2.19×)	2.56×(1.28×) 3.04×(1.52×) 4.32×(2.16×)	3.14× (1.57×) 3.78× (1.89×) 5.58× (2.79×)	2.46×(1.23×) 2.84×(1.42×) 4.02×(2.01×)

Table 6. Compressing activation maps. We report the Top-1/Top-5 accuracy, with the numbers in brackets indicating the change in accuracy. The total compression gain is reported for various state-of-the-art algorithms (in brackets we also report the compression gain without including gains from quantization). SEG outperforms other state-of-the-art algorithms in all models and datasets.

- Evaluation on compression gain and accuracy.
- SEG achieves the best compression rate with good accuracy.

Conclusion

- This paper proposed a three-stage compression and acceleration pipeline that sparsifies, quantizes and encodes activation maps of CNN's:
 - Sparsify:
 - Increases the number of zero values leading to model acceleration on specialized hardware
 - Quantization and Encoding:
 - Contribute to compression by effectively utilizing the lower entropy of the sparser activation maps
- Experiments demonstrate that the proposed pipeline effectively reduces the computational and memory requirements while reaching good performance.

Limitations

- Sparse activation is effective, however, it only happens to CNN.
- In the age of Transformer, sparse attention map is more popular and the compression methods are mainly quantization.
- However, similar techniques are still useful in infra-level:
 - Input compression
 - Checkpoint/gradient compression for speeding up training
 - Weight compression for speeding up inference