
Rick Barber

CHAINIAC
Proactive Software-Update Transparency via Collectively Signed
Skipchains and Verified Builds

Motivation

Why are we seeing so many “supply chain” attacks?

Software update ideal

Developers write update

A key is used to sign the update

Users get update and signature

Why are we seeing so many “supply chain” attacks?

One failure mode

Attacker compromises key and signs a
malicious update

Why are we seeing so many “supply chain” attacks?

Another failure mode

Attacker compromises source or
compilation and binary is signed by
unaware key holder

Why are we seeing so many “supply chain” attacks?

Yet another failure mode

Man in the middle replays stale, vulnerable
updates

Why are we seeing so many “supply chain” attacks?

Yet another failure mode

Someone compels targeted
malicious update

CHAINIAC Solution

Expand trust with a multi-signature cothority

Facilitate key rotation

Efficient, tamper-evident update timeline to ensure timeliness & integrity

Verifiable builds within the cothority

Building CHAINIAC
Step 0

Software update ideal

Developers write update

A key is used to sign the update

Users get update and signature

Building CHAINIAC
Step 1: Decentralized release approval

Software has a policy file containing developer public keys

For each new release, each developer signs the source and a user can accept

if number of signers greater than threshold

User builds the binary from signed source

But this sucks for the user….

Building CHAINIAC
Step 2: Build transparency via developers

Each candidate release is a binary + source

Each developer compiles the source to a binary using reproducible build techniques

and signs if their binary matches the release target binary

User trusts code if threshold of signatures

But this sucks for the developers

Discussion

What happens if a piece of software does not provide reproducible builds?

Is it necessary / important for developers wishing to incorporate CHANIAC for future
updates to migrate their entire update history to the timeline?

Building CHAINIAC
Step 3: Release validation with cothority

Binary + source are sent to third party witness servers who are trusted collectively but

not individually

These witnesses build the binary from source and witness the correspondence

User trusts code if threshold of witness signatures

Policy file contains witness public keys

Building CHAINIAC
Interlude: BFT-CoSi

Schnorr signatures
Alice wants to sign S, Bob has Alice’s public key X

and wants to be sure it is Alice who signed S

They’ve agreed on a group of prime order with a generator G

ahead of time, and a cryptographic hash function H

 where x is Alice’s secret key X = Gx

Alice selects a secret v and computes a commit ,

which she sends to Bob

V = Gv

V

Bob responds with a challenge c = H(V || S) (S is what’s being

signed, recall)

c
r

Alice responds with r = v − cx

(r,c) is called the Schnorr signature
Anyone can verify X is Alice’s public key

by computing and checking

c = H(V’ || S)

V′￼ = GrXc

Building CHAINIAC
Interlude: BFT-CoSi

Fairly straightforward to get multi-
signatures from this

Public key is the product of everyone’s
public key X = ∏

i

Xi

Each witness comes up with their own
secret and commit vi Vi = Gvi

Verifier issues a collective challenge
 aggregating commitsc = H(V | |S)

V = ∏
i

Vi

Each witness responds with
ri = vi − cxi

Schnorr signature is (r, c) with
r = ∑

i

ri

BFT-CoSi builds a tree from Schnorr
multi signatures where aggregate
commitments and responses flow up
and the message to be signed and
challenges flow down from root

Discussion

How can we ensure the integrity of witness servers?

Can witness servers be incentivized to collude and inject malware before verifying the
build?

Are witnesses shared across many packages or does each package have a unique
set of witness servers?If so, could this be used to leak information about proprietary
source code?

Building CHAINIAC
Step 4: Anti-equivocation measures

Goal: to prevent targeting of specific users and to discourage attempts to
compromise developers.

The cothority will build a hash chain of releases with each block containing Merkle
tree of the software version and other metadata.

Backward links will be hashes of prior blocks, forward links will be the BFT-CoSi
signatures, witnessing the next release

Discussion

The paper mentions how even if a faulty / backdoor'd build gets added to the log, it
stays present for future scrutiny. Is there an elegant method to prevent clients from
using this update?

Building CHAINIAC
Step 5: Key rotation

Developer and cothority keys will need to rotate from time to time, likely on staggered
schedules in order to present a moving target for attackers

A large cothority means frequent key turnover from the user’s POV, so we need an
efficient data structure

Create a block chain whose blocks are cothority configurations and have developers
include key rotation in their release Merkle tree

Building CHAINIAC
Interlude: Skipchains

Hash chains meet skip lists to achieve O(log n) search in a sorted linked list

Backlinks are hashes of prior blocks

Forward links are collective signatures, potential problem?

Blocks are cothority configurations

Discussion

The immediate discussion question that comes to mind is what applications besides
Chaniac can the skipchain data structure be used for?

Experiments

Debian: built packages reproducibly and timed it. 90% of a sample of popular and
random packages built in 3 minutes. The number was 5.5 minutes for 27 required
packages.

Tested time to add a new release block for cothorities of various sizes. CoSI
performed well. Communication overhead grew modestly with network size.

PyPI: compared skipchains to linear updates and diff between now and last update.
Skipchain performs similar to the latter.

For the client: CHAINIAC added an overhead of 16% to APT manager.

Discussion

How does Chaniac compare to other software update protection dissemination work
such as overlay and peer to peer based approaches?

