
Spectre Attacks: Exploiting Speculative Execution
P. Kocher et al.

2019 IEEE Symposium on Security and Privacy.

Presented by Vishakh Suresh Babu

https://ieeexplore.ieee.org/xpl/conhome/8826229/proceeding

Side channel attacks

Electromagnetic
field radiations

Power
consumption

Timing
analysis Acoustic

TEMPEST
(Transient Electromagnetic
Pulse Emanation STandard)

Meltdown

Spectre

SonarSnoopDifferential
power analysis

Why speculative execution?

● What if OOO execution reaches a branch whose direction depends on a value involved
in a RAW dependency with a preceding instruction that has not completed yet?

if (A = 0)
 A = B
else
 A += 2

 LD R1,0(R2)

 BNEZ R1,L1
 LD R1,0(R3)
 J L2
L1:
 ADDI R1,R1,#2
L2:
 SD R1,0(R2)

A is at 0(R2)
B is at 0(R3)

A is uncached

Why speculative execution? (cont’d)

● Naive option : CPU idles waiting for results

● Better : Guess execution path and proceed speculatively

○ Save a checkpoint of the register states

○ Predict branch direction -- Branch predictor

○ Predict target address -- Branch Target Buffer (BTB)

■ Don’t even have to wait until ID (instruction decode) stage

○ When value comes in from DRAM, check if guess was correct

■ Commit speculative work/ Discard faulty work

● Proceeds in 3 phases :

Spectre attacks

Setup phase
Speculative execution

+
Data exfiltration

Data recovery

Locate sequence of
instructions capable of

acting as the covert
channel transmitter

(Mis)train CPU into
speculatively executing

them

Speculatively execute the
instructions that leak

information through some
side channels

Retrieve the data
leaked over the
covert channel

Exploiting conditional branches

Attack scenario :

● Adversary controls unsigned integer x

● Bounds check to prevent access to sensitive memory outside array1

● Branch predictor (mis)trained to predict TAKEN

● array1_size and array2 uncached

● array1[x] cached

if (x < array1_size)
 y = array2[array1[x] * 4096]

CVE-2017-5753

Exploiting conditional branches (cont’d)

Attacker calls the snippet with x > array1_size :

● Cache miss on array1_size access

● Speculative execution while waiting for array1_size

● Predict that branch is taken

● Read what’s at (base addr. of array1 + x)

● Read returns secret byte k (fast)

if (x < array1_size)
 y = array2[array1[x] * 4096]

Address Value

-- --

base
address of

array1
2

-- 5

-- 13

-- 9

-- 6

-- 4

-- --

-- --

k

Exploiting conditional branches (cont’d)

Attack cont’d :

● array2[4 * 4096] is not in cache

● Issue a read for memory at address (base addr. of
array2 + 4 * 4096)

● array1_size fetched & branch direction clear (false)

○ Discard work done in speculative mode

○ Changes to the cache survive state reversion

if (x < array1_size)
 y = array2[array1[x] * 4096] array2[0 * 4096]

...
array2[1 * 4096]
...
array2[2 * 4096]
...
array2[3 * 4096]
...
array2[4 * 4096]
...
array2[5 * 4096]
...

array2[4 * 4096]

in memory

Exploiting conditional branches (cont’d)

Recovering k :

● Contents of array2 do not matter ⇒ Only status in
cache matters!

● If adversary has access to array2, time reads to
array2[i * 4096]

● If read to array2[j * 4096] is faster than other i’s

⇒ j = k, revealing the secret byte

if (x < array1_size)
 y = array2[array1[x] * 4096] array2[0 * 4096]

...
array2[1 * 4096]
...
array2[2 * 4096]
...
array2[3 * 4096]
...
array2[4 * 4096]
...
array2[5 * 4096]
...

array2[4 * 4096]

cachedin memory

Discussion

In the conditional branch example below, what happens if the value of x is chosen such that
array1[x] causes array1[x] * 4096 to be outside of the range of array2?

if (x < array1_size)
 y = array2[array1[x] * 4096];

Discussion (cont’d)

In the conditional branch example below, what happens if the value of x is chosen such that
array1[x] causes array1[x] * 4096 to be outside of the range of array2?

if (x < array1_size)
 y = array2[array1[x] * 4096];

● array2 needs to be fetched from the DRAM

● fetch the contents at address

base address of array2 + array1[x] * 4096

Poisoning indirect branches

● (Mis)train branch target buffer with malicious destinations

● Speculative execution resumes at the location fixed by the adversary

● Locate spectre gadgets to transfer victim’s information

● Example gadget :

xor %ebx,%ebx
add %eax,%ebx
mov %ebx,-0x8(%ebp)

● Unlike ROP, these gadgets don’t have to terminate in a ret

CVE-2017-5715

Discussion

I wonder if this attack can be used in conjunction with the work from “Innocent Flesh on the Bone”.
Specifically, if the gadgets the author found there can be exploited to perform arbitrary computation. Of
course, it depends on which attack is easier to set up: a stack attack or a speculative execution attack.
Combining the two works makes most sense if the latter is easier.

Discussion (cont’d)

How can we identify code vulnerable to Spectre attack?

Discussion (cont’d)

How can we identify code vulnerable to Spectre attack?

● Pretty much all non-sequential code

● Run on processors that use speculative execution

Discussion (cont’d)

How can we detect if such an attack is happening at any given moment?

Discussion (cont’d)

How can we detect if such an attack is happening at any given moment?

Source → Reference [3]

● Hardware counters and software events
to monitor system activity

● Use various ML models (LogR, SVM,
CNN) to analyze these events

Discussion (cont’d)

Spectre attacks make use of side channels to leak sensitive information. What are some other side
channels that can be used?

Variations

● Evict + Time attack

if (condition) // (mis)predicted taken
 read array1[R1]
read [R2]

○ If array1[R1] is a cache hit

■ Nothing goes onto the memory bus

■ read[R2] starts quickly

○ Selectively evict words from the cache (by causing contention)

⇒ analyze the timing of operations

Variations (cont’d)

● Contention on the register file

○ Processor sets aside a finite number of registers for saving checkpoints

○ Checkpoints saved if branch is predicted taken

if (R != 8)// R = 8 -- (mis)predicted taken
 // block 1
// block 2

○ Reduction in speculative execution

⇒ Shortage of space on the register file

⇒ Leaks info about the variables involved in the condition

Mitigation

● Turn off speculative execution

○ Huge performance impact

○ Use an lfence instruction

■ Instructions after the barrier need to
wait for previous loads to finish

■ Insert before both T & F branches

⇒ Disables speculative execution

 LD R1,0(R2)
lfence

 BNEZ R1,L1
 LD R1,0(R3)
 J L2
L1:
 ADDI R1,R1,#4
L2:
 SD R1,0(R2)

Mitigation (cont’d)

● Preventing speculation execution on potentially sensitive execution paths

○ Statically analyze code for security-critical code paths

○ Block speculation on such paths

○ Issues?

■ Need restrictions on non-security-critical code in the same process

■ Modern compilers are not capable of doing this automatically

Mitigation (cont’d)

● Restricting access to secret data

○ Replacing bounds checking with index masking

■ access array1[index AND bitmask]

■ index = 19 (10011) AND bitmask = 10 (1010) ⇒ 2 (00010)

○ XORing pointers with pseudo-random poison values

■ Adversary cannot use the poisoned pointer directly

Mitigation (cont’d)

● Preventing data from entering covert channels

○ Track data fetched while in speculative mode

○ Prevent use in subsequent operations until branch direction is resolved

Mitigation (cont’d)

● Retpolines

○ Protection against
branch target injection

○ Replace indirect
branch with ret to an
endless loop

○ Once branch target is
known ⇒ push it onto
stack & return to it

Image source → Retpoline: A Branch Target Injection Mitigation White Paper

Discussion

Would a suitable solution to Variant 1 (Exploiting Unconditional Branches) be to simply clear the cache
during the CPUs reset phase? What are the challenges with this? This simple addition could potentially
prevent an attacker from reading secret information from the speculative attack.

Discussion (cont’d)

Would a suitable solution to Variant 1 (Exploiting Unconditional Branches) be to simply clear the cache
during the CPUs reset phase? What are the challenges with this? This simple addition could potentially
prevent an attacker from reading secret information from the speculative attack.

● Clearing all the cache contents may be problematic

○ What about contents that were brought to cache by a benign code sequence?

● How about buffering speculative transactions in a cache side buffer?

○ Flush out only the buffer if needed

Discussion (cont’d)

Could there be a self-aware, “speculative” defense system to combat speculative execution exploits? For
example if an index or multi-register function is used within a speculative block, can the cpu just delay
processing it until the execution reaches that?

Discussion (cont’d)

Could there be a self-aware, “speculative” defense system to combat speculative execution exploits? For
example if an index or multi-register function is used within a speculative block, can the cpu just delay
processing it until the execution reaches that?

● Intel and ARM processors use lfence instructions

● Can be used to force a wait until branch direction is clear

Discussion (cont’d)

Which defenses proposed by this paper will continue to be implemented in future systems?

Retpoline support
for Windows

Image source → https://support.microsoft.com/en-us/topic/march-1-2019-kb4482887-os-build-17763-348-f7a9f207-0627-1fb9-cca7-29bb7b26027fr

Discussion (cont’d)

Meltdown

● Exploits a race condition between memory accesses & privilege check

● Bypass privilege level checks ⇒ breaks process isolation

CVE-2017-5754

Image source → https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked

In the wild...

“The good news is that no actual attacks have been recorded ‘in the wild.’ However, this may be due to
the fact that recording such an attack would be unlikely as the effects would not be recorded in any

measurable way. Fortunately, the risk and likelihood of such attacks is relatively low given the
difficulty of execution. Right now, it would be seen as a very user-targeted attack. However,

that isn’t to say it isn’t possible, and as hardware and computing speeds continue to
become more sophisticated, the likelihood of such attacks increase.”

Source → https://wott.io/blog/tutorials/2020/01/20/meltdown-and-spectre

References

1. P. Kocher et al., "Spectre Attacks: Exploiting Speculative Execution," 2019 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 2019, pp. 1-19, doi: 10.1109/SP.2019.00002.

2. Moritz Lipp, M. Schwarz, D. Gruss, Thomas Prescher, W. Haas, A. Fogh, Jann Horn, S. Mangard, P. Kocher, Daniel
Genkin, Yuval Yarom, & Michael Hamburg (2018). “Meltdown: Reading Kernel Memory from User Space.” In
USENIX Security Symposium.

3. Ahmad, Bilal. (2020). “Real time Detection of Spectre and Meltdown Attacks Using Machine Learning.”

4. How the Spectre and Meltdown Hacks Really Worked

https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked

