
ECE 486 Solution Set 4 Fall 2021

Problem 1. Consider the following system:

G(s) =
8000

s5 + 52s4 + 927s3 + 6000s2 + 10150s+ 8500
(1)

(a) (4 points) What are the poles of G(s)? You may use Matlab or any other numerical tool
to compute the poles.

(b) (4 points) Is the system stable?
(c) (4 points) What is the time constant associated with each pole?
(d) (4 points) Construct a first-order or second-order approximation from the dominant pole.

Do you expect the dominant pole approximation to be accurate?
(e) (4 points) Use Matlab (or another numerical tool) to plot the step reponses for G(s) and

your dominant pole approximation on a single figure.

Solution.

(a) The denominator can be factored:

den (G(s)) = s5 + 52s4 + 927s3 + 6000s2 + 10150s+ 8500

=
(
s2 + 40s+ 425

) (
s2 + 2s+ 2

)
(10 + s) (2)

The last factor trivially yields a pole. Then apply the quadratic formula on the first
two factors separately. This gives that the poles are pk = {−10,−1± i,−20± 5i} for
k = 1, 2, . . . , 5.

(b) Since all the poles have negative real part, the system is stable.
(c) The five time constants (in units of seconds) for the above poles are τk = {0.1, 1, 1, 0.05, 0.05}

for k = 1, 2, . . . , 5.
(d) The dominant poles are the first pair of complex numbers, i.e. p2,3 = −1 ± i. These

correspond to the second factor in (2). Therefore we can construct a second order approx-
imation Ĝ (s) as,

Ĝ (s) =
z0

(s2 + 2s+ 2)
(3)

Comparing the DC gain of (1) with that of (3) we see that we need to set z0 =
32

17
(e) See Figure 1.
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Figure 1: The step reponse for the original system and the dominant pole approximation
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Problem 2. In this problem, we consider the altitude control for a small quadcopter (Parrot
Mambo) shown below. The total thrust produced by the four rotors is given by T = (4kT ) · u
where u is a unitless command given to each motor. The motor command is restricted to the
range [0, 500]. A model for the altitude dynamics of this quadcopter when hovering is:

mḧ(t) = (4kT ) · u(t)−mg (4)

where h := altitude (m), m := 65× 10−3 (kg) is the quadcopter mass, kT := 5.276× 10−4 (N)
is the motor thrust coefficient, g = 9.81m

s2
is the gravitational constant. Recall that if u = 500

then the quadcopter achieves its maximum upward acceleration of 6.42m
s2

. Disturbance forces
will be neglected in this problem.

(a) (5 points) Equation 4 models the altitude dynamics of the quadcopter with motor com-
mand u as input and altitude h as output. Are these dynamics stable? (Hint: You can
neglect the constant term −mg.)

(b) (10 points) The goal is to fly the quadcopter from the initial conditions h(0) = ḣ(0) = 0
to a final height h̄ in 1 sec. Consider the following desired altitude trajectory:

hdes(t) =
h̄

2
× (1− cos(πt)) (5)

Verify that the vertical acceleration for this profile is ḧdes(t) =
h̄

2
π2 cos(πt). What is the

largest value h̄ > 0 that can be reached in 1sec while remaining within the maximum
acceleration limit?

(c) (5 points) Define an open-loop controller that selects the motor command as follows:

u(t) =
m̂

4k̂T

(
g + ḧdes(t)

)
=

m̂

4k̂T

(
g +

h̄

2
π2 cos(πt)

)
(6)

Here m̂ and k̂T are estimates of the quadcopter mass and thrust constant.1 This open-loop
controller is based on the pre-planned trajectory hdes(t) and does not use a measurement
of the actual altitude. Assume the estimates are perfect: (m̂, k̂T ) = (m, kT ).Verify this
open-loop controller causes the quadcopter altitude h(t) to follow the desired trajectory
hdes(t).

1It is important to distinguish between the true values (m, kT ) and the estimates (m̂, k̂T ) used by the controller.
In general, the control design is performed using simplified models that are reasonably accurate but with
some error relative to the “real” dynamics.
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(d) (10 points) The homework contains a Simulink diagram QuadOLSim.mdl that imple-
ments this open-loop controller with h̄ = 1m. There is also an m-file QuadOLPlots.m
that can be used as a template for your solutions for this problem. Simulate the open-loop
controller with (m̂, k̂T ) = (m, kT ). Hand in a plot of h(t) vs. t.

(e) (10 points) Simulate the open-loop controller with the parameter estimates (m̂, k̂T ) =
(0.95 ×m, 1.05 × kT ). Hand in a plot of h(t) vs. t. Note that these small errors cause
the altitude to diverge from the desired trajectory. Small disturbances forces (which have
been neglected) will also cause the trajectory to diverge.

Solution.

(a) In the absence of the gravitational term we get a classic double integrator system G(s) =
4kT
ms2

which has a double pole at the origin and is therefore not stable.

(b) We can simply differentiate the required trajectory profile:

hdes(t) =
h̄

2
(1− cos(πt)) ⇒ ḣdes(t) =

h̄

2
π sin(πt) ⇒ ḧdes(t) =

h̄

2
π2 cos(πt)

Now call the maximum acceleration possible amax = 6.42m/s2. Then the strategy to
cover the absolute maximum height in 1 sec, is to simply accelerate at amax. This would
mean the quadcopter covers a height of amax/2 = 3.21 m in 1 sec (why?). However, if one
were to stick with the trajectory profile, then we need to ensure the ḧdes(t) ≤ amax for all
t ∈ [0, 1]. This implies

h̄

2
π2 cos(πt) ≤ amax =⇒ h̄ ≤ 2amax

π2
≈ 1.3m

since argmax
t∈[0,1]

cos (πt) = 0.

(c) Plug (6) into (4) to get:

mḧ(t) = (4kT ) · u(t)−mg

mḧ(t) = (4kT ) · m̂
4k̂T

(
g +

h̄

2
π2 cos(πt)

)
−mg

If m̂ = m and k̂T = kT then,

ḧ(t) =
h̄

2
π2 cos(πt) = ḧdes(t)

Since h(0) = hdes(0) = 0 and ḣ(0) = ḣdes(0), it follows that the h(t) will trace the desired
trajectory hdes(t).

(d) The response of open loop controller can be found in Figure 2 (left).
(e) The response of open loop controller with parameter estimates can be found in Figure 2

(right). It can be seen that small disturbances forces will cause the trajectory to diverge.

Problem 3. This problem will focus on designing a feedback control law for the quadcopter to
track altitude reference commands. The model is given by Equation 4 with details in Problem
2. The control law should be designed so that the closed-loop system with input hdes(t) and
output h(t) is stable. In addition, the closed loop should satisfy the following transient response
requirements when hdes(t) is any step reference command of magnitude less than 1m:

(i) has a settling time ≤ 2 sec,
(ii) has an overshoot ≤ 5 %,
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Figure 2: Desired trajectory V.S. actual trajectory.

(iii) has steady state error |ess| ≤ 0.01 m,
(iv) has u(t) ∈ [0, 500] for all t ≥ 0

The homework contains a Simulink diagram QuadPID.mdl with an implementation for a PID
control law. (For this problem we will use a PD control law so the integral gain will be zero
in the Simulink simulations). There is also an m-file QuadPlots.m that can be used as a
template for your solutions for this problem. Questions:

(a) (5 points) Consider a control law of the form:

u(t) = Kp(hdes(t)− h(t))−Kdḣ(t) +
m̂g

4k̂T

As discussed in class, this is a version of proportional-derivative control. This form avoids
the differentiation of the reference command r(t) and is sometimes called proportional
control with rate feedback. This control law does includes a term to approximately cancel
the gravitational effect. Derive an ODE that models the closed-loop dynamics with this
control law assuming perfect cancellation of the gravitational term.

(b) (20 points) Choose the gains Kp and Kd to make the closed-loop stable and to satisfy
requirements i), ii), and iii).
Hint: Convert requirements i) and ii) into requirements on the natural frequency and
damping ratio for the closed-loop poles.

(c) (15 points) Use the posted Simulink model to simulate your control law with hdes(t) = 1
m for t ≥ 0 and zero initial conditions. Assume the controller has perfect estimates of
(m, kT ). Determine if your design satisfies requirement iv). If iv) is not satisfied then
modify your gains until you are able to satisfy all design requirements. Submit plots of
h(t) vs. t and u(t) vs. t for your final choices of Kp and Kd.

Solution.

(a) Substituting u(t) into (4), we have

mḧ(t) = 4kTu(t)−mg

= 4kT (Kp(hdes(t)− h(t))−Kdḣ(t) +
m̂g

4k̂T
)−mg

= 4kTKp(hdes(t)− h(t))− 4kTKdḣ(t)

The last step is due to the assumption that we have perfect cancellation of the gravitational
term. Therefore, the ODE model of the closed loop system is:

ḧ(t) +
4kTKd

m
ḣ(t) +

4kTKp

m
h(t) =

4kTKp

m
hdes(t) (7)
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(b) Suppose the closed loop transfer function is:

h(s)

hdes(s)
= H(s) =

ω2
n

s2 + 2ζωns+ ω2
n

.

From (7), we have:

2ζωn =
4kTKd

m
, ω2

n =
4kTKp

m
→ ζ =

√
kT
mKp

Kd, ωn =

√
4kTKp

m
.

Now we want the following time specs:
(i) Settling time:

ts ≤ 2 sec → 3

ζωn
≤ 2 → ζωn =

2kTKd

m
≥ 3

2
→ Kd ≥

3m

4kT
≈ 92.3995.

(ii) Overshoot:

Mp = exp(− ζπ√
1− ζ2

) ≤ 0.05→ ζπ√
1− ζ2

≥ ln(20)→

ζ2 =
kT
mKp

K2
d ≥

ln(20)2

π2 + ln(20)2
→ Kp ≤

(π2 + ln(20)2)kT
ln(20)2m

K2
d

If we choose Kd = 92.3995, then we have Kp ≤ 145.5119. Therefore, we can choose
(Kp,Kd) = (145.5119, 92.3995), which will satisfy time specs (i) and (ii).
(iii) Steady-state error:
For any step input hdes(t) with magnitude M ≤ 1, we have h(s) = H(s)Ms . Since H(s)
has strictly stable poles, by FVT, we have

h(∞) = lim
s→0

sH(s)
M

s
= M.

The steady-state error ess = h(∞)−M = 0 ≤ 0.01. Or you can argue that the DC gain
of H(s) is equal to 1.

(c) Closed-loop simulation result can be found in Figure 3, where we choose (Kp,Kd) =
(145.5119, 92.3995). It can be seen that the time specs are satisfied. The magnitude of
u(t) does not exceed its limit.
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Figure 3: Closed-loop simulation with PD controller.
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