
ECE 486 (Control Systems) – Homework 4

Due: Sep 30, midnight

Problem 1. (20 points) Consider the following system:

G(s) =
8000

s5 + 52s4 + 927s3 + 6000s2 + 10150s+ 8500

(a) What are the poles of G(s)? You may use Matlab or any other numerical tool to compute the poles.

(b) Is the system stable?

(c) What is the time constant associated with each pole?

(d) Construct a first-order or second-order approximation from the dominant pole. Do you expect the dominant
pole approximation to be accurate?

(e) Use Matlab (or another numerical tool) to plot the step reponses forG(s) and your dominant pole approximation
on a single figure.

Problem 2. In this problem, we consider the altitude control for a small quadcopter (Parrot Mambo) shown below.
The total thrust produced by the four rotors is given by T = (4kT ) · u where u is a unitless command given to each
motor. The motor command is restricted to the range [0, 500]. A model for the altitude dynamics of this quadcopter
when hovering is:

mḧ(t) = (4kT ) · u(t)−mg (1)

where h := altitude (m), m := 65 × 10−3 (kg) is the quadcopter mass, kT := 5.276 × 10−4 (N) is the motor thrust

coefficient, g = 9.81
m

s2
is the gravitational constant. Recall that if u = 500 then the quadcopter achieves its maximum

upward acceleration of 6.42m
s2 . Disturbance forces will be neglected in this problem.

(a) Equation 1 models the altitude dynamics of the quadcopter with motor command u as input and altitude h as
output. Are these dynamics stable? (Hint: You can neglect the constant term −mg.)

(b) The goal is to fly the quadcopter from the initial conditions h(0) = ḣ(0) = 0 to a final height h̄ in 1 sec.
Consider the following desired altitude trajectory:

hdes(t) =
h̄

2
× (1− cos(πt)) (2)

Verify that the vertical acceleration for this profile is ḧdes(t) = h̄
2π

2 cos(πt). What is the largest value h̄ > 0
that can be reached in 1sec while remaining within the maximum acceleration limit?
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(c) Define an open-loop controller that selects the motor command as follows:

u(t) =
m̂

4k̂T

(
g + ḧdes(t)

)
=

m̂

4k̂T

(
g +

h̄

2
π2 cos(πt)

)
(3)

Here m̂ and k̂T are estimates of the quadcopter mass and thrust constant.1 This open-loop controller is based
on the pre-planned trajectory hdes(t) and does not use a measurement of the actual altitude. Assume the

estimates are perfect: (m̂, k̂T ) = (m, kT ). Verify this open-loop controller causes the quadcopter altitude h(t)
to follow the desired trajectory hdes(t).

(d) The homework contains a Simulink diagram QuadOLSim.mdl that implements this open-loop controller with
h̄ = 1m. There is also an m-file QuadOLPlots.m that can be used as a template for your solutions for this
problem. Simulate the open-loop controller with (m̂, k̂T ) = (m, kT ). Hand in a plot of h(t) vs. t.

(e) Simulate the open-loop controller with the parameter estimates (m̂, k̂T ) = (0.95 ×m, 1.05 × kT ). Hand in a
plot of h(t) vs. t. Note that these small errors cause the altitude to diverge from the desired trajectory. Small
disturbances forces (which have been neglected) will also cause the trajectory to diverge.

Problem 3. This problem will focus on designing a feedback control law for the quadcopter to track altitude reference
commands. The model is given by Equation 1 with details in Problem 2. The control law should be designed so that
the closed-loop system with input hdes(t) and output h(t) is stable. In addition, the closed loop should satisfy the
following transient response requirements when hdes(t) is any step reference command of magnitude less than 1m:

(i) has a settling time ≤ 2 sec,
(ii) has an overshoot ≤ 5 %,

(iii) has steady state error |ess| ≤ 0.01 m,
(iv) has u(t) ∈ [0, 500] for all t ≥ 0

The homework contains a Simulink diagram QuadPID.mdl with an implementation for a PID control law. (For this
problem we will use a PD control law so the integral gain will be zero in the Simulink simulations). There is also an
m-file QuadPlots.m that can be used as a template for your solutions for this problem. Questions:

(a) Consider a control law of the form:

u(t) = Kp(hdes(t)− h(t))−Kdḣ(t) +
m̂g

4k̂T

As discussed in class, this is a version of proportional-derivative control. This form avoids the differentiation
of the reference command r(t) and is sometimes called proportional control with rate feedback. This control
law does includes a term to approximately cancel the gravitational effect. Derive an ODE that models the
closed-loop dynamics with this control law assuming perfect cancellation of the gravitational term.

(b) Choose the gains Kp and Kd to make the closed-loop stable and to satisfy requirements i), ii), and iii).

Hint: Convert requirements i) and ii) into requirements on the natural frequency and damping ratio for the
closed-loop poles.

(c) Use the posted Simulink model to simulate your control law with hdes(t) = 1 m for t ≥ 0 and zero initial con-
ditions. Assume the controller has perfect estimates of (m, kT ). Determine if your design satisfies requirement
iv). If iv) is not satisfied then modify your gains until you are able to satisfy all design requirements. Submit
plots of h(t) vs. t and u(t) vs. t for your final choices of Kp and Kd.

1It is important to distinguish between the true values (m, kT ) and the estimates (m̂, k̂T ) used by the controller. In general, the
control design is performed using simplified models that are reasonably accurate but with some error relative to the “real” dynamics.
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