ECE 486 (Control Systems) — Homework 3

Due: Sep. 23, midnight

Problem 1. Consider the following first order system:

i)

ii)

iii)

iv)

y=-05y+2u, y(0)=0 (1)

(5 points) First, consider a proportional control law u(t) = K, (r(t) —y(t)) where r(t) is the reference command.
As mentioned in class, it is typically important, for practical reasons, that u(t) does not get too large. Consider
a unit step command:

0 t<0sec
r(t) = { 1 t>0sec (2)
For what gains K, is |u(t)| <1 for all time? (Hint: The largest value of |u(t)| will occur at ¢ = 0.)

(5 points) Choose the gain K, that satisfies the constraint in part i) and minimizes the steady-state error due
to the unit step command. What is the time constant of the closed-loop system for this gain?

(5 points) Next consider a proportional-integral (PI) control law:

u(t) = Ke(t) + K; /O e(r)dr (3)

where e(t) = r(t) — y(t) is the tracking error. Combine the system model (Equation 1) and PI controller
(Equation 3) to obtain a model of the closed-loop system in the form:

J+ a1y + agy = b7 + bor (4)

How do the damping ratio and natural frequency depend on K, and K;? What is the steady state error if r is
a unit step?

(10 points) Keep the value of K, designed in part b) and choose K; to obtain a damping ratio of { = 0.7. For
these PI gains, what are the estimated maximum overshoot and 5% settling time (neglecting the effect of the
zero)?

(5 points) Plot the output response y(t) due to a unit step r for both the P and PI controllers. The closed-loop
with the PI controller has a zero due to the term b17. Briefly explain how this zero affects the response.

Problem 2. (20 points) Consider the following first order system:

i—2y+y=u, y(0)=0

with a PD controller in the form w, = K,(r(t) — y(t)) — Kqy(t).

i
ii

)
)
iii)
)

iv

What is the ODE model for the closed loop from r to y?
Choose (K, K4) so that the closed loop system is stable and has (wy, () = (2,0.5).
What is the steady state error if r is a unit step reference?

Would you increase or decrease K, to reduce the steady state error?
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Figure 1: A diagram of a unity feedback system.

Problem 3. (20 points) Consider the unity feedback system in Figure 1. Let the plant’s transfer function be given
by:

6.32
P(s) = — 2%
)= 201

Suppose our controller is given by K(s) = 4. Can we choose K(s) as a PI controller to stabilize the closed-loop
system from r to y? Apply the Routh-Hurwitz criterion to determine this.

Problem 4. Figure 2 below shows the key forces on a car. By Newton’s second law, the longitudinal motion of the
car is modeled by the following first-order ODE:

mv(t) - Fnet (t) - Faero(t) - Froll - quav (t) (5)
where v is the velocity (JZ;), m = 2085kg is the mass, and the forces are given by:

e F,.: is the net engine force. For simplicity, assume this force is proportional to the throttle angle: F,.; = ku
where u := engine throttle input (deg) and k = 40% is the force constant. The engine throttle is physically
limited to remain within 0° <« < 90°.

o Fero is the aerodynamic drag force. For this problem we will model this as Fie.., = bg+b1v where by = —336.4N
and by = 23.22802¢¢ This approximation is accurate for velocities near v = 2922 1

sec”’
o F.oi; = 228N is the rolling resistance force due to friction at the interface of the tire and road.

e Fy 4y is the force due to gravity. This is given by Fy,q, = mgsin(f) where 6 is the slope of the road (rads)

and g = 9.81-%5 is the gravitational constant.
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Figure 2: Free body diagram for a car.

Additional details on the model are given in Example 2.1 of the notes. Putting these pieces together yields the
following first-order ODE:

20850(t) + 23.20(t) = 40u(t) + 108.4 — Fypan(t) (6)
1 Additional details (not required to complete this problem): A better approximation for the aerodynamic drag is Faero = cpv? with
cp = 0.4N;n573c2. This is a nonlinear function of the velocity. We can approximate this by the linear function cpv? ~ bg + byv. This

m

approximation is obtained by performing a Taylor series around the velocity v = 29 .



The input is the throttle v and the output is the velocity v. The gravitational force Fy,q, is a disturbance. The
homework contains a Simulink diagram CruiseControlSim.mdl that implements the vehicle dynamics. You can
either implement the dynamics by yourself or use the provided Simulink model. For your convenience, there is also
an m-file CruiseControlPlots.m that can be used as a template for your answers (you can also just use your own
template).

(a) (5 points) Assume the car is on flat road so that 6(t) = Orads and Fyq,(t) = ON. What is the open-loop
(constant) input @ required to maintain a desired velocity of vges = 297227

(b) (5 points) Simulate the system with the input @, initial condition v(0) = 2972, and the following gravitational
force:

0N t < 10sec
Forau(t) = { 350Nt > 10sec

Submit a plot of velocity v versus time ¢. Note that the gravitational force of 350N corresponds to a very small
road slope of &~ 1°. Observe that this small slope causes a large deviation in the vehicle velocity.

(c) (10 points) Let e(t) = vges — v(t) denote the tracking error between the desired velocity vges = 2972 and actual
velocity v(t). Consider a PI controller of the following form:

u(t) = @+ Ke(t) + K /0 e() dr (M)

where @ is the open-loop input computed in part (a). Choose the PI gains so that the cruise control system is
stable and rejects disturbances due to changing road slopes within &~ 10sec. The closed-loop should also be over
or critically damped as oscillations are uncomfortable for the driver.

Hint: Note that @ is chosen to maintain a desired velocity vges = 2972 when on flat road 6 = 0°. In other
words, @ is chosen to satisfy 23.2v4.s = 40@ + 108.4. Thus substituting the expression for u(t) (Equation 7) into
the longitudinal dynamics (Equation 6) yields:

t
2085d(t) + 23.20(t) = 2320405 + 40 <er(t) + K, / e(r) dT) — Fyran(t)
0

This closed-loop ODE can be used to select your gains.

(d) (10 points) Modify the Simulink diagram to include your PI controller. Simulate the closed-loop system with
the your PI controller, initial condition v(0) = 292 and the following gravitational force:

sec’

0N t < 10sec
Forau(t) = { 1400N ¢ > 10sec

Note that the gravitational force of 1400N corresponds to a road slope of &~ 4°. You will need to update the
Simulink block that generates this gravitational force.

Submit plots of velocity v versus time ¢ and throttle input w versus ¢. Verify that the throttle input remains
within the physical limits. You should also submit the Simulink diagram modified to include your PI controller.



