

Network Power for Automobiles Group 26: Dhruv Kulgod, Constantin Legras, Akash Chandra

4/28/24

Introduction

- Solve a problem we experience on the Formula SAE team building prototype EVs
- Manufacturers are trying to move to a "one power one communication" arrangement

- Provide power output at different voltage levels in an automotive setting
- Simplify the existing power distribution networks on EVs
- Superior data collection

- 4-switch DC/DC controller
- STM32 microcontroller used for high level control
- CAN communication to the rest of the car, I2C to talk to the DC/DCs and E-meters

High Level Design

MCU Subsystem

- I2C communication with E-meter and DC/DC controller
- CAN communication with the vehicle
- Temperature sensing
- Alarm signal for ensuring safety

Filter Subsystem

- Powerstage hot
 swapping/presence detection
- Scale 5V signal to 3.3V to allow MCU to read
- Temperature sensing

Powerstage Subsystem

- Follow I2C commands from MCU to modulate output voltage
- Provide voltage and current feedback to the MCU over I2C
- Supply maximum 2A on the output
- Battery Voltage DC/DC Module Regulated Voltage Shunt Output Voltage Emeter I2C Bus Emeter
- Maintain temperature below 60°C

Backplane PCB

- MCU: STM32F103
- CAN Transceiver: TCAN1044A
- 10kHz low-pass filter for thermistor voltage
- Configurable CAN termination setup

Bode Plot of Filtering Circuit

This bode plot shows that the cutoff frequency of the filter is 10.709 kHz

The 1 oz double sided 2 layer PCB that houses the microcontroller

- DC/DC Controller IC: MPQ4214-AEC1
 - Changed from the original design due to supply shortage
- E-meter: INA219
- 40 V, 7.2 mOhm 40 A NMOS used as switches
- 15 uH shielded inductor
- 28.2 uF input and output capacitance
- Test points added to help with verification and testing
- 2nd layer dedicated mostly to the ground plane
- Polygons used to conduct power with minimal losses
- Stitching vias added to dissipate heat created by switches and inductors

The double sided, 2 layer, 1 oz PCB that houses the DC/DC Controller IC and the Emeter

Embedded Software Design

• I2C communication with emeter and DC/DC chips

 ADC thermistor readings, with Direct Memory Access for extra speed

- Alarm output pin to signal output or communication errors
- CAN communications with ECU

• Detection of secondary boards using the thermistors

Testing GUI Design

• Written in Python using the Flet library

CAN communications through KVaser/Peak system
 drivers

• Easy testing without needing to control the system through debugger

 Displayed thermistor and emeter data on custom plots

Power Controller	s C ⊟	≡ ▶ ∎ ∛
🗘 Settings 🔆 Chart	5	
Output 1 Settings Output 2 Settings Output 3 Settings Board Not Detected Board Not Detected Board Not Detected	Output 4 Board Dete	Settings _{cted} 🖘
Relay command X Relay command X Relay command X	🗹 Relay cor	nmand 🗙
Reset Controller Turn Off Output Reset Controller Turn Off Output Reset Controller Turn Off Output	Reset Controller	Turn Off Output
3.3 V 5 V 3.3 V 5 V 3.3 V 5 V	3.3 V	5 V
12 V 24 V 12 V 24 V 12 V 24 V	12 V	24 V
• • •	_	
No output No output Out	tput: 5 V	
Main Settings		
Only show connected outputs		
CAN sign of life period: 100 ms		

Manufacturing and Testing

• Backplane I/O testing before power boards

• Power rail isolation issues led to internal short in MCU and LDO

Verification

ELECTRICAL & COMPUTER ENGINEERING

Ι

Performance Results

- 100% ripple on DC output
- All microcontroller based subsystems worked without any issues
 - **I**2C
 - CAN
 - Thermistors
- Missing capacitor buffers on inputs / outputs due to purchasing errors and budget constraints
- Failed NMOS resulted in audible "screaming" for the first DC/DC module

Future Improvements

- Add missing capacitor buffers on inputs / outputs
- Improved manufacturing using easier to solder components with a reflow oven
- Adding thermal relief to ground pads for 0603 components to allow for better manufacturing
- Move to a 4 layer PCB on the backplane to further remove the noise from the I2C and thermistor lines
- Update DC/DC gains for expected load currents

Conclusion

- Our DC output was not stable
- Communication and I/O of the module, as well as the safety systems worked perfectly
- Given more time to test, we are confident that we could solve most of the output issues

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN