
1

Portable Water Tracking Attachment

Design Document

ECE445 Spring 2024

Project #44

Subha Somaskandan, Subhi Sharma, Cindy Su

Professor: Arne Fliflet

TA: Luoyan Li

2

Contents

1. Introduction………………………………………………………………………………..…. 3
1.1 Problem …………………………………………………………………………..…...3
1.2 Solution …………………………………………………………………………..…...3
1.3 Visual Aid ………………………………………………………………………..…...3
1.4 High Level Requirements ………………………………………………………..…...4

2. Design……..………………………………………………………………………………..… 5
2.1 Block Diagram ……………….…………………………………………………..…..5
2.2 Functional Overview & Subsystem Design ……………………….……………..…..6

2.2.1 Power Subsystem…………………………………………………………...6
2.2.2 Weight Measurement & Tracking Subsystem…………….………………...9
2.2.3 Wifi & App Subsystem………….…………………………………………15

2.3 Tolerance Analysis………………………………..……………………………..…...19

3. Cost & Schedule……..……………………………………………………………………….20
3.1 Cost Analysis ……………….…………………………………………………..…...20
3.2 Schedule………………………………..……………………………..……………...21

4. Ethics & Safety..……..……………………………………………………………………….24

5. Citations……....……..…………………………………………………………………….….25

3

1. Introduction

1.1 Problem

With a busy schedule, it can be difficult to remember to drink enough water during the day. Most water
tracking products on the market are not customizable to one’s lifestyle or daily habits. The amount of
water that everyone needs to drink per day depends on their height, weight, sex, physical activity, and
climate. There are a variety of water drinking apps, but these do not actually check if the right amounts of
water are being drunk, and they can be ignored without completing the task. Furthermore, there are also
water bottles on the market that have markings on them to indicate how much water to drink per hour, but
these force one to buy a new bottle entirely.

1.2 Solution

Our solution is a portable sleeve bottom attachment to a 32oz water bottle that measures how much water
you are drinking, and connects to a smartphone app to remind you to do so. Within the app, you can input
information such as your sex, age, activity level, and your recommended water intake will be calculated,
or you can input your intake manually. Every hour, a reminder will be sent out to drink a specific amount
of water, and the attachment will check using weight and inertial movement sensors if this is completed.
The water drinking data will then be relayed via a microcontroller to the app, where you can see your
progress for the day. In addition to water tracking, our attachment will be able to be location tracked via a
transceiver module, which lets the user find their attachment or water bottle, if lost.

1.3 Visual Aid

4

1.4 High Level Requirements

1. The application must set water drinking habits and send reminders to drink calculated amounts per hour
based on the user's age, sex, activity level, and hours of sleep.

2. If the user finishes the water requirement before the reminder is sent, the application must not send a
reminder until the next hour that the user does not meet the water drinking requirement. Similarly, if the
user finishes their water requirement for the day, the application must not send any notifications after this
point.

3. The application must track and log the user’s daily water consumption and present the data in an
easy-to-understand chart format for the user to check daily water intake.

5

2. Design

2.1 Block Diagram:

Figure 1: Block Diagram of Portable Water Tracking Attachment

Our design is made up of 3 subsystems, the Wifi and App Subsystem, the Water Measurement and GPS
Tracking Subsystem, and the Power System. The Wifi and App subsystem receives data from the
microcontroller through a server and wifi router, and stores the data in a database, which can be accessed
from the smartphone app client. The Water Measurement and GPS Tracking system measures the weight
of the water bottle when it is placed down. There is also location access through the transceiver module,
and the positioning, weight, and location data is sent to the microcontroller through various protocols,
listed in Figure 1. Finally, the Power System delivers both 3.3V and 5V through two voltage regulators,
which are connected to a 3V Lithium battery supply. The 3.3V and 5V outputs are used to power the
components in the Water Measurement and GPS Tracking system, as outlined in Figure 1.

6

2.2 Functional Overview & Subsystem Design

2.2.1 Power Subsystem

For the majority of our devices, a voltage input of 3.3V will suffice, but for the ESP32 Microcontroller
and YZC-133 Load Cell Weight Sensor, an input voltage of 5V will be needed, as shown in Table 1. For
the ESP32 Microcontroller, the development board requires 5V, but the ESP32 itself needs 3.3V, which
can be directly routed from a pin on the development board.

A linear regulator, the LP2953, will be used to provide the 5V to our microcontroller and load cells as
well as another regulator to provide 3.3V to our transceiver and gyroscope/accelerometer. We will use a
3V Lithium Battery, composed of two AA batteries and a clip, to power our linear regulators, as shown in
the Power Subsystem in our Block Diagram Figure 1, also shown in Figure 2. A linear regulator produces
a fixed output voltage via an internal feedback loop and comparators, as well as being generally more
efficient in power conversion and voltage regulation when compared to resistor dividers, and buck
converters. Furthermore, the LP2953 protects against reverse input battery protection and is very
compatible with battery applications, which are both vital to our design.

Figure 2: Power System Block Diagram

7

Component/Device Voltage & Current Requirements

ESP32-WROOM-32 Microcontroller Input Voltage: +3.3V or +5V
Max Current: 250mA

YZC-133 Load Cell Weight Sensor Input Voltage: +5V

MPU-6050 3 Axis Gyroscope + Accelerometer Input Voltage: +2.375V - +3.46V
V_LOGIC: 1.71V to Input Voltage
Operating Current: 3.9mA

HX711 Load Cell Amplifier Input Voltage: +2.7V - +5.5V
Operating Current: <1.5mA

L70RE-M37 Navigation GPS Transceiver Module Input Voltage: +2.8V - +4.3V
Max Current: 16mA

W3011A RF ANT 1.575GHZ N/A

Table 1: Power Requirements for All Components/Devices

Figure 3: Linear Regulator LP2953 Schematic for 5V Fixed Output

As shown in Figure 3 above, a 1uF needs to be connected from V_in to GND since we are using a battery
input, as well as tying the pins V_Tap and Feedback (FB) together, and V_Out and Sense together. For a
5V output, a 2.2uF film or aluminum electrolytic capacitor needs to be connected at the output for better
filtering, and then will be routed to the microcontroller as well as the load cell. For the 3.3V output, since
our current consumption is much less than 250mA, a 4.7uF to 5.5uF capacitor will suffice. This signal
will then be routed to the gyroscope, load cell amplifier, and transceiver.

8

Pin Number Function Connection

1,8,9,16 GND, ground Supply’s Ground

2,7,10,11 NC No Connections

15 IN, power input 3V Power Supply

3 OUT, 3.3V or 5V output voltage SENSE, capacitor connected to
ground, and to other components

4 SENSE, voltage feedback input Tied to OUT

13 VTAP, internal resistor divider
output

Tied to FEEDBACK

14 FEEDBACK, error
non-inverting input

Tied to VTAP

Table 2: Pin Diagram for LP2953, for 3.3V or 5V output

Requirements Verification

Lithium Battery Unit must supply 3V +/- 5% to
the Voltage Regulator when active

1. Use a multimeter to connect across the battery
unit’s positive and negative leads, and measure the
voltage and note any fluctuations. Ensure the
steady value is within 5% of 3V.

Voltage Regulator output of 3.3V/5V must supply
3.3V/5V +/- 5%, with current output up to 250mA

1. Probe OUT and GND on the LP2953 with the
positive and negative leads (respectively) of a
differential probe that can be connected to an
oscilloscope.

2. Once displayed on the oscilloscope, measure
average voltage and ensure it is within 5% of
desired output voltage. If necessary, measure
maximums and minimums to this same tolerance
as well.

3. Connect oscilloscope current probes to wire
coming from OUT on the LP2953 to the wires
going to the microcontroller and the load cell
input, and verify the sum is under 250mA. Repeat
on other LP2953 with output of 3.3V, but now
probe the wires going to the gyroscope, load cell
amplifier, and transceiver.

9

2.2.2 Weight Measurement and Tracking Subsystem
This system contains an IMU, transceiver, and a load sensor with an accompanying amplifier which all
communicate with the ESP32 microcontroller. This system measures the weight of the water bottle
through the load sensor and amplifier, specifically when it is placed down, which is indicated by the IMU.
This system also enables location tracking through the transceiver and accompanying antenna. This data
is sent to the microcontroller through a digital bit signal, I2C protocol, and UART protocol, respectively.
This system gets both 5V and 3.3V from the power subsystem as input to send to the load sensor, and the
amplifier/IMU/transceiver respectively.

2.2.2.1 Inertial Measurement Unit (MPU-6050 Module 3-Axis Gyroscope and Accelerometer)
Input: Position of the chip, which translates to the position of the water bottle.
Output: Data regarding acceleration and 3-axis position of the bottle via an I2C protocol.

This IMU contains a triple axis gyroscope and accelerometer which have digital outputs. The unit will be
connected to the microcontroller and power supply.

The IMU is necessary because it will detect when someone has picked up their bottle based on the angular
position of the chip. This data will be sent to the microcontroller using I2C protocol so that it can be used
to indicate when the bottle has been placed back down to initiate the weight sensor. The range of the
gyroscope is user-programmable from 200, 500, 1000, and 2000 degrees/second. The unit has a 3.9 mA
operating current when the available 6 degrees of motion are all enabled.

Pin Name Connection

6 AUX_DA I2C Master Serial Data to
external sensors

7 AUX_CL I2C Master Serial Clock to
external sensors

8 VLOGIC Digital I/O Supply Voltage to
VDD

9 AD0 I2C Slave Address LSB

12 INT Interrupt Digital Output (totem
pole or open drain)

13 VDD To Power Supply Voltage and
Digital I/O Supply Voltage

18 GND To Power Supply Ground

23 SCL I2C Serial Clock to
Microcontroller SCL

10

24 SDA I2C Serial Data to
Microcontroller SDA

Table 3: IMU Pin Connections

2.2.2.2 Weight Measurement Using a Load Cell and HX711 Amplifier
Amplifier Inputs: Load Cell’s channels S- and S+
Amplifier Outputs: Analog Output to the Microcontroller

The HX711 is necessary for the load cell because it ensures that the output voltage of the strain gauge is
proportional to the excitation voltage. This helps to make the final voltage produced by the load cells
accurate and free from noise. This unit is a 24 bit analog-to-digital converter meant for weighing sensors.

The ESP32 microcontroller has a HX711 library in order to effectively calibrate the load cell, set any
offsets, and obtain any weight data. Commands within the ESP32 IDE such as read() and
get_value(number of readings) obtain the raw readings and the average of the last defined number of
readings minus the tare weight, respectively.

The load cell is 12.7mm x 12.7mm x 80mm and will be mounted on a small platform. The range of
weight it can measure is from 0-5kg, and it requires a 5-10V drive voltage. The rated output is 1.0±0.15
mV/V and it has a recommended excitation voltage of 5V. The input resistance is 1066±20Ω and the
output resistance is 1000±20Ω.

Pin Name Connections

3 AVDD To Power Supply of 2.6-5.5V and
E+ of the Load Cell

5 AGND To Power Supply Ground

7 INA- To Channel S- of the Load Cell

8 INA+ To Channel S+ of the Load Cell

9 INB- To Power Supply Ground

10 INB+ To Power Supply Ground

Table 4: Pin Assignments of HX711 Amplifier

11

Figure 4: HX711 Module connected to Load Cell

In order to connect the load cell to the amplifier and microcontroller:
● Connect the red wire (E+) to the E+/GND of the ESP32 and HX711 modules
● Connect the black wire (E-) to GND for the HX711 amplifier and GPIO 16 pin of the ESP32

module
● Connect the white wire (S-) to the INA- pin for the HX711 amplifier and GPIO 4 pin of the

ESP32 module
● Connect the green wire (S+) to INA+ of the HX711 amplifier and the 3.3V pin of the ESP

module.

Figure 5: Dimensions of the Load Cell (mm)

12

2.2.2.3 GPS Chip and Antenna (L70RE-M37 GPS Transceiver Module, W3011A Antenna)
The GPS unit utilizes an L1 Band Receiver at 1575.42 MHz. The serial interface used is UART, and the
default number of bits transmitted during one pulse (one baud) is 9600bps. The RF antenna must be
connected to the GPS module to receive data. This antenna can operate between 1559-1606.6MHz, which
is compatible with this GPS module.

A GPS is more for a convenience element; if one loses their device, they will be able to track it.
Consequently, they will also be able to track their bottle’s location if the device is attached. The GPS chip
has to be surface mounted onto the PCB with the Antenna. This module has ultra low consumption, so
during standby it will consume 500uA, 8uA during backup, and 13mA during tracking.

In order to access data from the GPS chip, the ESP32 module can be connected via a UART serial
connection. The protocol used by this chip is NMEA-0183 and PMTK, and thus a NMEA-0183 parser
can be used to sift through geographical data points collected. The parser is based on ESP UART Event
driver and an ESP event loop library.

Figure 6: Quectel L70-R Series GPS Module

Pin Name Connection

2 TXD1 To the transmit pin of the ESP32
Module

3 RXD1 To the receiving pin of the
ESP32 Module

8 VCC To Power Supply (2.8-4.3V)

9 RESET To Power Supply Ground. If this
pin is unused then keep it open
or connect it to VCC.

11 RF_IN (characteristic
impedance of 50 ohms)

To the Antenna (Antenna is
unpolarized)

13 ANTON To a second power supply. Keep
the pin open if unused.

Table 5: Quectel L70-R Series GPS Module Pin Assignments

13

Figure 7: Reference Design for a Passive Antenna

In the figure above, the antenna directly receives power from the VCC_RF. The L70-R series module
provides a power supply for an external antenna via VCC_RF, with a range of 2.8-4.3V. The typical value
used is 3.3V.

ANTON is an optional pin which can be used to control the power supply of the active antenna. This will
not be used in our design.

The Antenna can be connected to pin 11 of the GPS module via surface mount. The Antenna has two
contact pads, and it is not polarized. Either terminal can act as a ground or feed.

Figure 8: Antenna Mechanical Drawing

14

Figure 9: Antenna Dimensions and Terminal Definitions

Requirements Verification

The IMU (Inertial Measurement Unit) sensor data,
specifically x, y, and z angular velocity and
acceleration, must be able to be read on the
microcontroller IDE.

1. Program ESP32 Board with Arduino IDE, and
download the MPU6050 library.
2. Ensure pin connections to IMU and ESP32 are
correct as outlined in 2.2.2.1.
3. In the code, initialize an object of the MPU6050
library, and follow the documentation to set ranges
for the accelerometer and gyroscope.
4. Using the MPU6050 documentation, write code
to get the values for x, y, and z acceleration and
angular velocity, and upload code.
5. Move and rotate the water bottle that the IMU
is attached to in all three directions, and ensure the
display readings correspond accordingly.

The Load Cell and Amplifier Combination must
be able to detect changes in weight as little as
2.6oz1 +/- 5%, as the user drinks water, and
displays it on the microcontroller IDE

1. Program ESP32 Board with Arduino IDE, and
download the HX711 library.
2. Ensure pin connections to the load cell and
amplifier within themselves as well as the
amplifier to the microcontroller are correct based
on 2.2.2.2.
3. Following the documentation for the HX711
Library, calibrate the sensor with the water bottle,
which has a known weight of 0.590kg.
4. After calibration, fill up the water bottle to full
capacity with water.
5. Using the HX711 Library, write code to get and
display the weight of the water bottle, and verify it
is heavier due to the added weight of the water.
6. Drink or pour out amounts close to 2.6oz and
place the water bottle back down flat, and read the
weight again, and ensure it is within 5% of 2.6oz

1 This quantity is derived from the minimum amount of water the user can manually set, which is 48oz,
spread over 24 hours minus the minimum hours of sleep a user can input, which is 6 hours. This equates
to 2.6oz per hour the user is awake. Note that the calculated water intake in a day based on user input of
age, sex, and activity will be in the range of 60-80oz.

15

subtracted from the original weight of the water
bottle. Repeat for bigger amounts of water to
verify.

The GPS and Antenna units must retrieve
geographical data and submit this information to
the microcontroller IDE.

1. Connect the GPS module to the ESP32
microcontroller using a UART serial connection.
This can be done by connecting the transceiving
and receiving pins of the GPS module to the
respective pins on the ESP32 board using surface
mounting techniques.
2. The data can be accessed by implementing an
NMEA-0183 parser to parse through data streams
outputs from GPS modules based on ESP UART
libraries.

2.2.3 Wifi and App Subsystem
When the weight sensor updates the weight of the water bottle, the value will be transmitted to the
microcontroller. Through the WiFi Module, this data will be transmitted to a database hosted on an online
server. When the end-user accesses the application on their smartphone, the application interfaces with the
server to retrieve and display the most recent updates.

2.2.3.1 Wifi-Module (ESP32 WROOM 32)

Figure 10: Peripheral Schematics

16

Pin number Name Usage

35 UART TXD0 Data transmission, will be
connected to the TX pin of the
USB to Serial port convertor

34 UART RXD0 Data reception, will be
connected to the RX pin of the
USB to Serial port convertor

25 GPIO0 Determine if code is run from
memory or loaded via UART

24 GPIO2 Determine if code is run from
memory or loaded via UART

3 EN When Programming the esp32,
we will pull EN pin low briefly
to trigger reset

1, 15, 39 GND Ground

3 3V3 3.3V power

Table 6: ESP32 Pin Diagram

Configuration
To program the ESP32 via the UART terminal and ensure it reads new code instead of executing
preloaded code from its memory, it is necessary to manipulate specific GPIO pins to induce the correct
boot mode. Specifically, GPIO0 must be pulled low during the reset to enter the bootloader mode. After
the new code has been transmitted to the ESP32 via UART, a subsequent reset is initiated. For the ESP32
to boot from its updated internal memory and execute the new code, GPIO0 should be set high before this
reset. This sequence ensures that the ESP32 exits the bootloader mode and starts running the newly
uploaded program from its flash memory upon reboot.

Figure 11: Strapping Pins table from esp32 datasheet

17

Wi-Fi Configuration
To set up Wi-Fi connectivity on the ESP32, the Arduino IDE will be used to program and deploy the
necessary configuration script. This script includes the SSID, password, and the server’s URL for the
Wi-Fi network that the ESP32 is intended to connect to. After the script is successfully transferred to the
ESP32, it establishes a connection to the designated Wi-Fi network with the specified credentials and
sends POST requests to transmit data to the database.

Requirement Verification

A laptop must be able to transmit code to the
ESP32 through a USB Type-C connector to
UART

Connect the ESP32 to a LED and to the laptop
using a USB Type-C cable and upload a led
blinking test code. Confirm the successful code
transmission by observing the expected behavior
of the blinking LED.

The ESP32 must successfully connect to a specific
Wi-Fi network using credentials provided in the
Arduino IDE code, which includes the SSID,
password, and server’s URL .

After uploading the Wi-Fi configuration code to
the ESP32, verify the connection by checking the
ESP32’s serial output for a confirmation message
indicating successful connection to the Wi-Fi
network

Once connected to the Wi-Fi network, the ESP32
must handle POST requests to send data to an
online database.

Execute a test script that triggers the ESP32 to
send mock data to the online database using POST
request. Verify the data by checking the entries.
Measure the response time over multiple
transmissions to ensure reliability and accuracy.

18

2.2.3.2 Front-End Application
When opening the app, the user will see a homepage with a water bottle at the center, representing the
current water level within your actual water bottle. The homepage also has a button that navigates to the
statistics page. This page shows the analysis of the user’s water intake and displays the intake data in a
chart presented through weekly, monthly, and yearly statistics, allowing users to track and manage their
hydration habits. Another feature accessible from the home page is the location page. This page provides
the functionality of showing the real time location of the user’s water bottle to ensure that it can always be
found easily.

Figure 12: Front-End Application flowchart

Every 30 minutes, the app will check to ensure the user’s water intake aligns with their pre-set hydration
goals. If the user has not consumed the desired amount of water within this timeframe, the app will send
out a notification to the user as a reminder, encouraging the user to drink water and ensure they maintain
high hydration levels throughout the day.

19

Figure 13: App Notification System flowchart

2.3 Tolerance Analysis:

The block critical to our project’s success is the weight sensor load cell. The readings must be accurate in
order to assess how much water the user has drunk, and is vital to sending reminders to the smartphone
application. Routed from the HX711 amplifier, the 24 bit digital signal will be encoded in the
microcontroller interface, and this reading is given in volts and can be displayed in the microcontroller
IDE.

The relationship between the weight that the load cell is measuring and the reading in volts is given by

𝑊𝑒𝑖𝑔ℎ𝑡 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 * 𝑅𝑎𝑡𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 * 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

In our application, the smallest weight that needs to be measured is the weight of the water bottle itself
added to the smallest increment of water one can be reminded to drink. This is outlined in footnote 1, but
the smallest increment is 2.6oz. Converting to kg, the smallest total weight is 0.590 kg + 0.073708 kg =
0.6637088 kg. The rated weight of the sensor is 5kg, the sensitivity is 1+/- 0.15 mV/V, which ranges from
0.85 mV/V to 1.15 mV/V, and the excitation voltage is 5V. Solving the equation, this gives a reading of
about 0.5mV. This is a very small voltage, but this can be displayed on the IDE properly. Furthermore,
this is the smallest increment, and on average, the increment and the weight needing to be measured will
be higher and less error prone.

20

3. Cost and Schedule

3.1 Cost Analysis:

The total component and part cost is listed below in Table 7, excluding shipping and taxes.. With shipping
and taxes included, our final total for components and parts is $153.06. For labor costs, we are assuming a
salary of $35/hour for each teammate, and estimating 200 hours each, this comes out to $7,000 per
person. Having 3 people, the total labor cost for the team comes out to 3 x &7,000 = $21,000.
Furthermore, we will also be utilizing the machine shop, with an estimated quote of 5 hours, assuming a
salary of $20 per hour. Thus, our project comes out to a grand total of $21,253.06.

Component/Parts
Description and
Part Number

Manufacturer Vendor Quantity Extended Price

ESP32-WROOM-
32
Microcontroller

Espressif Amazon Pack of 3 $12.99

USB to Serial port
CP2102

HiLetgo Amazon 1 $7.49

YZC-133 Load
Cell Weight
Sensor

Geekstory Amazon Pack of 2 $10.99

MPU-6050 3 Axis
Gyroscope +
Accelerometer

DIANN Amazon Pack of 5 $12.99

HX711 Load Cell
Amplifier

Stemedu Amazon Pack of 5 $9.49

L70RE-M37
Navigation GPS
Transceiver
Module

Quectel DigiKey 2 $18.60

W3011A RF ANT
1.575GHZ

Pulse Electronics DigiKey 5 $8.45

LM2953 Low
Dropout Voltage
Regulator

Texas Instruments DigiKey 1 $6.54

TPCL225K016R5 KYOCERA AVX DigiKey 5 $14.35

21

000 CAP TANT
2.2UF

C4AQOBU4520
M18J CAP FILM
5.2UF

KEMET DigiKey 4 $6.92

32oz Water Bottle N/A Amazon 1 $12.99

Water Bottle Boot
(estimated)

N/A Amazon 1 $10.99

TOTAL — — $132.79

Table 7: Total component quantity and cost

3.2 Schedule:

Week of Task Team Member

February 26 Unit test individual components
and connect them to the
microcontroller to get sample
information.

Attend a design review with the
instructor to get feedback and
make any necessary changes
before drafting the PCB.

Everyone

March 4 Begin designing the PCB and
prepare to order the first board at
the end of the week.

Begin writing code for the
microcontroller’s
communication with the IMU,
GPS, and weight sensor.

Everyone

March 18 Test and debug PCB, and order
the second board by the end of
the week.

Begin and continue to work on
the mobile application, and

Subhi Sharma, Subha
Somaskandan

Cindy Su

22

make adjustments to the
microcontroller’s code.

Begin to prototype the physical
design and consult the machine
shop for assistance.

March 25 If PCB does not work, retry and
order the third board.

If PCB works, integrate the
board and code together and test
its functionality. Adjust the
microcontroller’s code and
ensure that it works with the
new board.

Continue to work on the mobile
application and have main
frameworks outlined (inventory
system and a portal to input
personal information).

Subhi Sharma, Subha
Somaskandan

Everyone

Cindy Su

April 1 If PCB does not work, retry and
order the fourth board.

If PCB works, integrate the
board and code together and test
its functionality. Adjust the
microcontroller’s code and
ensure that it works with the
new board.

Begin to assemble the complete
device and test its functionality.

Mobile application must be able
to make necessary calculations
to show how much water one
needs to drink. More complex
functionality such as the
reminders and data collection
must also be finished or close to
completed.

Subhi Sharma, Subha
Somaskandan

Subhi Sharma, Subha
Somaskandan

Subhi Sharma, Subha
Somaskandan

Cindy Su

April 8 If PCB does not work, retry and
order the fifth board.

If PCB works, integrate the
board and code together and test

Everyone

23

its functionality. Adjust the
microcontroller’s code and
ensure that it works with the
new board.

Test the final product’s
functionality and make final
changes if needed. Work on
presenting at the final demo.

April 15 Present the product’s
functionality at the mock demo.

Use the feedback from the mock
demo to make any necessary
changes for the final demo.

Begin working on the final
presentation and final report.

Everyone

April 22 Present at the final demo.

Work on the final presentation
and report.

Everyone

April 29 Present product at the final
presentation.

Everyone

Table 8: Schedule for the Building Process

24

4. Discussion of Ethics and Safety

The closest mechanism to our design is the HidrateSpark water bottle, which is specifically designed to be
“smart” and has app connectivity and location tracking. Our weight system could be similar to this bottle,
and this could result in accidental misuse.

According to the IEEE Code of Ethics, Section I, Point VI, maintaining technical competence and
undertaking tasks only after clear limitations have been outlined as mentioned, could result in potential
similarities. However, our design does have clear differences as it is portable and removable from the
bottle. This device can be connected to any 32 oz bottle, rather than being built into one. We understand
the ethical standard of not infringing on any existing patents and we will not be repeating any existing
processes already done by HidrateSpark.

Furthermore, according to Section II, Point VII in the IEEE Code of Ethics, discrimination based on age,
gender, sex, ethnicity is not tolerated and innovation should reflect this as well. With our product, we do
have to make calculations based on metrics such as these, so we have to be careful to not assume anything
or be offensive. One idea we have to combat this is to allow an option for the user to set their water intake
manually, as this may be what works the best for them. We can also put forth our calculations as
recommendations or suggestions rather than facts, as everybody will be different.

Our team also upholds all necessary safety accommodations, as we have all completed the required lab
training.

25

Citations

“NMEA Parser Example.” GitHub,
github.com/espressif/esp-idf/blob/master/examples/peripherals/uart/nmea0183_parser/README.md.
Accessed 22 Feb. 2024.

Dave, et al. “ESP32 with Load Cell and HX711 Amplifier (Digital Scale).” Random Nerd Tutorials, 23
Apr. 2022, randomnerdtutorials.com/esp32-load-cell-hx711/#hx711-amplifier. Accessed 22 Feb. 2024.

HidrateSpark. “Hidratespark pro 32 Oz: Bluetooth Smart Water Bottle & Hydration Reminder App:
Insulated Stainless Steel.” HidrateSpark,
hidratespark.com/products/hidratespark-pro-32oz-smart-water-bottle?utm_source=google&utm_medium=
cpc&utm_campaign=Performance_Max-Shopping&campaignid=19636654461&adgroupid=&adid=&gad
_source=1&gclid=Cj0KCQiAzoeuBhDqARIsAMdH14HqBSS0eOD4fHKBRN9bdDQNBT1iFPscshHAk
XgEQpV4WaNAqpC_7EsaAsVrEALw_wcB. Accessed 22 Feb. 2024.

Pulseelectronics, productfinder.pulseelectronics.com/api/open/part-attachments/datasheet/W3011A.
Accessed 22 Feb. 2024.

L70 Hardware Design - Rs Components, docs.rs-online.com/74ea/0900766b8147dbe2.pdf. Accessed 22
Feb. 2024.

LP295x Adjustable Micropower Low-Dropout Voltage Regulators Datasheet, Texas Instruments,
https://www.ti.com/lit/ds/symlink/lp2952-n.pdf?ts=1708657346374&ref_url=https%253A%252F%252F
www.google.com%252F. Accessed 22 Feb. 2024.

How to Convert a Load Cell Reading into Total Weight, Hunker,
https://www.hunker.com/13408598/how-to-convert-a-load-cell-reading-into-total-weight. Accessed 22
Feb. 2024.

How to connect ESP32 for programming,
https://www.lab4iot.com/2019/07/14/tutorial-on-how-to-program-the-esp32-wroom-32-or-esp32f/
Jul 14, 2019. Accessed 22 Feb 2024.

ESP32-wroom-32 Datasheet,
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf. Accessed
22 Feb. 2024

IEEE Code of Ethics, IEEE, https://www.ieee.org/about/corporate/governance/p7-8.html. Accessed 22
Feb. 2024

