Source separation

Source separation

Source separation

Source separation preliminaries

Source separation: The general problem statement

Source separation preliminaries

Source separation: The general problem statement

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]}_{\text {Mixing matrix }}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

Unknown mixing matrix, unknown source signals \rightarrow heavily under-determined

Source separation preliminaries

Source separation: The general problem statement

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

Mixing matrix

Source separation preliminaries

Source separation: The general problem statement

Mixing matrix

Hard to separate the sources even visually

Let's make some simplifications: Mixing matrix is known based on Angle of Arrival (AOA)

[^0]\[

\left[$$
\begin{array}{l}
x_{1} \\
x_{2}
\end{array}
$$\right]=\underbrace{\left[$$
\begin{array}{cc}
\mid & \mid \\
\vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\
\mid & \mid
\end{array}
$$\right]}_{AoA matrix \mathbf{A}}\left[$$
\begin{array}{l}
s_{1} \\
s_{2}
\end{array}
$$\right]
\]

$$
X=A . S+N
$$

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?

But what if AoA unknown? It's hard to solve for S... but what if S is speech signals? When the source signal is speech, exploit TF-disjointness

AoA matrix A

$$
X=A . S+N
$$

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals? When the source signal is speech, exploit TF-disjointness

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals? When the source signal is speech, exploit TF-disjointness

AoA matrix A

$$
X=A . S+N
$$

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?
When the source signal is speech, exploit TF-disjointness

DUET Algorithm Steps:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\mid & \mid \\
\vec{a}_{\theta_{1}} & \vec{a}_{\theta_{2}} \\
\mid & \mid
\end{array}\right]}\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]
$$

AoA matrix A

$$
X=A . S+N
$$

[^0]: - What is angle of arrival (AoA)? How do you quantify it? - Relation between AoA and FFT
 - How do you get AoA? From camera or from audio itself?
 - How to solve $\mathrm{X}=\mathrm{A} \mathrm{S}+\mathrm{N}$ even when A is known

