DSP: Discrete Fourier Transform (DFT)
\# 3

Let's do 3 simple examples.
(1) $\operatorname{DFT}\left(\cos 2 \pi f_{m} n t_{s}\right)$
(2) DTT $\left(e^{j 2 \pi f_{m} n t_{s}}\right)$
(3) $\operatorname{DFT}\left(\operatorname{sim} 2 \pi \mathrm{Fm}_{\mathrm{m}} n t_{s}\right)$
Θ Example 2: $\operatorname{DFT}\left(x[n]=e^{j 2 \pi f_{1} n t_{s}}\right)$

Just one stick rotating at
Θ Example 3: $\operatorname{DFT}\left(x[n]=\sin 2 \pi f_{1} n t_{s}\right)$

Nike $\cos 2 \pi f_{1} n t_{s}$, you need 2 sticks to cancel ont the complex values, but
© Translating to real-world frequencies
Now, slowest freq $=N$ samples/eycle
say sampling freq. $=f_{s}$
N samples take
I cycle takes
\therefore slowest frequency $=$
$\frac{f_{s}}{N} \Rightarrow$ Called Fundamental freq.
Faster freq. \Rightarrow
For large $N, \quad(N-1) \approx N$,

$$
\therefore
$$

Θ Let's put it an together
Consider sampling your vice signal at 8000 Hz and taking a 1000 point FFT (ie.,

\Downarrow FAT

(5) Thus, when analyzing a given signal, we have we can control

Large ifs means
Large N means we have finer

Widen of bin $=\mathrm{F}_{\mathrm{S}} / \mathrm{N}$
Θ BEWARE OF INCOMPLETE CYCLES.
Θ

What is the FFT mag. spectrum for these signals?
Θ Now, what is the FFT mag. spectrum of this \rightarrow

Think of this x_{3}

$$
\text { signal as } \longrightarrow
$$

Thus, $\operatorname{DFT}\left(x_{3}\right) \quad \operatorname{DFT}\left(x_{2}\right)$ since the DFT $\left(f\left\|\|_{0}\right)\right.$ influences results
$\Theta \ln$ fact:

$$
\text { is } \operatorname{DFT}\left(x_{4}\right)=\operatorname{DFT}\left(x_{2}\right)
$$

Many different rotations ave needed \Rightarrow Think of thin as

REAL SPECTROGRAM : Voice Signal

Shows how a specific freq. comes and goes over time.

Shows various freq. components at thin time slice.
$\Theta 3$ important properties of DFT
(1) DFT is linear

$$
\operatorname{DFT}(x[n]+y[n])=
$$

$$
=
$$

So what is DFT of $\cos 2 \pi f_{1} n t_{s}+\sin 2 \pi f_{2} n t_{s}$?
(2) For real signals, DFT is symmetric
\longrightarrow Not only around $\frac{f_{s}}{2}$

Θ so take frequencies in $\left[\frac{f_{S}}{2}, F_{S}\right]$ and move to the
(F) Its like the
sticks are going ceockurise (i.e., $(-) v e \theta$) to cancel the complex part.
(3) DFT of a shifted signal is original DFT with a phase shift.

$$
x_{m}^{\prime}=x_{m} \cdot e^{j \frac{2 \pi}{N} \cdot m \cdot k}
$$

 Let's shift x by k samples

$$
D F T \equiv X_{m} \quad D F T \equiv X_{m}^{\prime}
$$

$$
\begin{aligned}
& x^{\prime}[n]=x[n+k] \\
& x_{m}^{\prime}=\operatorname{DFT}\{x[n+k]\}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad x_{m}^{\prime} & =\sum_{n=0}^{N-1} \\
& =\sum_{n=0}^{N-1}
\end{aligned}
$$

What is this?

$$
x_{m}^{\prime}=x_{m} e^{j \frac{2 \pi}{N} \cdot m \cdot k}
$$

This phase shift is proportional to K, and

$$
\begin{aligned}
& x_{n}=\cos 2 \pi f_{1} n t_{s}+\cos 2 \pi\left(2 f_{1}\right) n t_{s}
\end{aligned}
$$

$$
\begin{aligned}
& t_{3} \\
& \text { Now } \quad z_{1} e^{j \frac{2 \pi}{N} \cdot(m=1)(k=1)} \\
& z_{N-1} e^{j \frac{2 \pi}{N}(m=N-1)(k=1)} \\
& Z_{N-2} e^{j \frac{2 \pi}{N}(m=N-2)(k=1)} \\
& t_{0} \\
& t_{1}=\frac{\int_{(N-1) \theta}^{20}}{\frac{20}{4 \theta}}+\int_{0}^{40}= \\
& +\overbrace{2(N-1) \theta}^{20}=
\end{aligned}
$$

