DSP: Discrete Fourier Transform (DFT)
\# 2

But observe that each, \bar{f}_{i} vectors are N-Dimensional And $f_{0}, f_{1}, f_{2} \cdots f_{N-1}$ are all orthogonal, thus must be also

Vectors $\bar{f}_{0}, \bar{f}_{1}, \bar{f}_{2} \ldots \bar{f}_{N-1}$ form a for N-dimensional space.

Now, express the original signal x in time \& freq. basis

$$
\begin{gathered}
I X_{t}= \\
{\left[\begin{array}{ccccc}
1 & 0 & - & 0 \\
0 & 1 & & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \vdots \\
1 & & \ddots & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right]=[}
\end{gathered}
$$

Thus, Fourier transform is the representation of a signal vector in a different (frequency) basis.

$$
\begin{gathered}
F \cdot X_{f}=X_{t} \\
X_{f}=F^{-1} x_{t}= \\
z_{2}=e^{-j 0} x_{0}+ \\
z_{2}=\sum_{n=0}^{N-1} x_{n} \quad \text { where } \theta= \\
z_{m}=
\end{gathered}
$$

What is ' m ' in Z_{m} ?
Inverse DFT \Rightarrow Frow freq back to time domain

$$
\begin{aligned}
& I X=F \\
& \downarrow \\
& {\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{N-1}
\end{array}\right] \quad\left[\begin{array}{cc}
\downarrow & 1 \\
f_{0} & f_{1} \\
1 & \cdots
\end{array}\right]\left[\begin{array}{c}
f_{N-1} \\
1
\end{array}\right]\left[\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{N-1}
\end{array}\right]}
\end{aligned}
$$

$$
x_{n}=\sum_{m=0}^{N-1}
$$

Inverse Discrete Fourier Transform (IDFT)

Analogy

$\operatorname{Green}(G)$

$$
\begin{aligned}
& \text { Lonely } \\
& \text { queen }
\end{aligned}=\left[\begin{array}{lll}
1 & 1 & 1 \\
R & G & B \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{u} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & 1 & 1 \\
p & B r & w \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]
$$

(\rightarrow) Now when basis is complex, what about the weights?

DFT is a complex Vector \rightarrow What does that mean?

Magnitude and Phase plots of DFT
$\langle z m\rangle$

(G) Signals will have non-zero magnitudes for some frequencies.
Bandwidth =

Analogy

 spinning sticks, you may need to start some of the sticks by rotating them with phase ϕ_{m}, in addition to increasing / decreasing their lengths.

$$
\begin{aligned}
& \text { signal } \\
& \text { we } \\
& \text { want }
\end{aligned}=\square+
$$

Q: Does a time domain signal have phase?
Θ Example 1: $x(t)=\cos 2 \pi f_{m} t$
Discrete sampled signal $x[n]=$

\downarrow synthesize with frequency basis.

\ddagger
Θ But coszrfimnts only has f_{m} freq.
Why does DFT have
components?
Answer:
\therefore Note that $\cos 2 \pi f_{m} n t_{s}$ is mot a rotation. It's only the X-axis shadow of the rotation. so, to make $\cos 2 \pi f_{m} n t_{s}$, we need to cancel out the y-axis shadows of the rotating stick.

$$
\left[\begin{array}{l}
\cos \theta \\
\cos (m \theta) \\
\cos 2(m \theta) \\
\cos 3(m \theta) \\
\vdots \\
\cos (N-1)(m \theta)
\end{array}\right]=\left[\begin{array}{l}
e^{j 0} \\
e^{j m \theta} \\
e^{j 2 m \theta} \\
e^{j 3 m \theta} \\
\vdots \\
e^{j(N-1) \theta}
\end{array}\right] \times z_{m}
$$

* Thus, real signals always center of
* For $\cos 2 \bar{n} f_{m} n t_{s}$, an phases are 0
© Translating to real-world frequencies
Now, slowest freq $=N$ samples/eycle
say sampling freq. $=f_{s}$
N samples take
I cycle takes
\therefore slowest frequency $=$
$\frac{f_{s}}{N} \Rightarrow$ Called Fundamental freq.
Faster freq. \Rightarrow
For large $N, \quad(N-1) \approx N$,

$$
\therefore
$$

