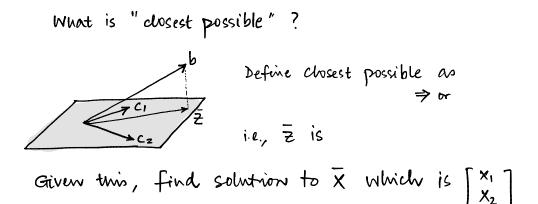
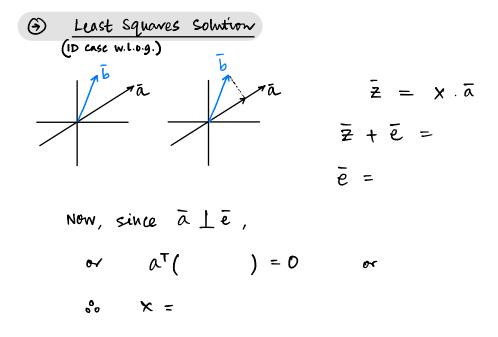
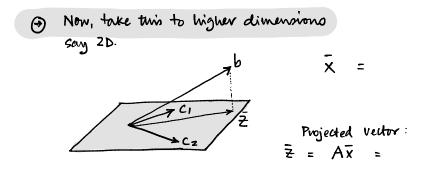

Linear Algebra #3

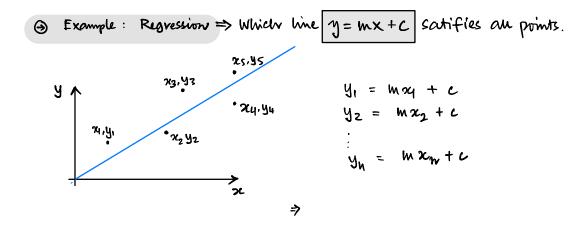

Butstion: How many colt is possible to
$$A\bar{x} = \bar{b}$$
, and what due is $N(A)$?
(4) $\begin{bmatrix} symm \\ work \\ \\ w \end{bmatrix}^{N}$ Rank $= m = m$
Full round
(5) $\begin{bmatrix} thin \\ watrix \end{bmatrix}^{N}$ Rank $= m < m$
Full vol. rank
(6) $\begin{bmatrix} fat \\ matrix \end{bmatrix}^{N}$ Round $= m < m$
(7) $\begin{bmatrix} fat \\ matrix \end{bmatrix}^{N}$ Round $= m < m$
To see this, turn This
Matrix to a
(9) $\begin{bmatrix} Matrix \\ Matrix \end{bmatrix}$ Rank $\leq m$, Rank $\leq m$
Rank $\leq m$, Rank $\leq m$

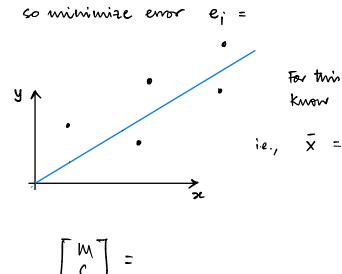

③ Banis : vincently Independent
④ Dimensions = = | Banis |
△ A space can have
④ : dùn (C(A)) = ?
④ Orthogonal Vectors :
③ Prinogonal Vectors :
③ Norm :
$$\begin{bmatrix} 1\\ y\\ 1 \end{bmatrix}$$
 > scalar => $\mathbb{R}^{m} \rightarrow \mathbb{R}$
④ Norm : $\begin{bmatrix} 1\\ y\\ 1 \end{bmatrix}$ > scalar => $\mathbb{R}^{m} \rightarrow \mathbb{R}$
④ Longth = L_2 norm =
④ Lo norm = # of
④ uvT =
④ (AB)⁻¹ = and (AB)^T =
④ A^TA is a



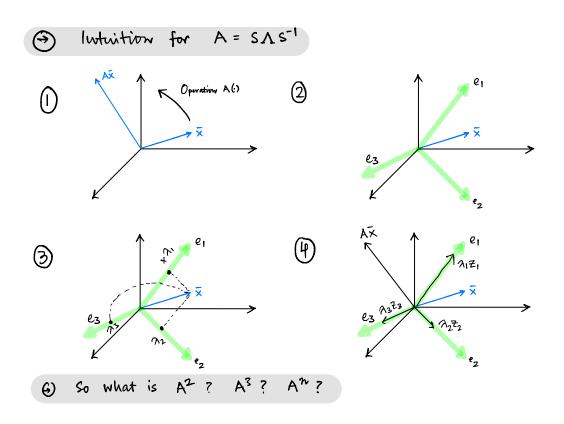
Ans: Produce a vector an $\overline{z} = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ s.t. \overline{z} is closest possible to \overline{b} .

Now deelane
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 as the approx solⁿ. to $A\bar{x} = \bar{b}$





oo Projection matrix (P) =


Matrix P projects any vector to the


```
since the solution exists ->
```


For this minimization, we know solution $\bar{\mathbf{x}}$

