Linear Algebra \# 2
$\rightarrow A \bar{x}=\bar{b} \quad:$ when is tins solvable?
need to hold.
(1) \bar{b} has to

\Downarrow

- No way to
- Any $A \bar{x}$
(2) A has to be \Downarrow
There should n 't be of getting to \bar{b} from columns of A.

- Matrix is
- Matrix is
- Determinant (A)
$(\underset{\operatorname{Cank}}{ }(A)=\operatorname{No}$. of

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} \\
1 & 1 & 1
\end{array}\right] \Rightarrow \text { Linearly }
$$

if

$$
\Rightarrow
$$

If dependent, thew

$$
w_{1} c_{1}+w_{2} c_{2}=
$$

means \bar{C}_{3} can be expressed as
Θ Nu space : $\{\bar{x}: \quad\} \equiv$ space of an $N(A)$
Θ shape of mull space:

$$
A \underset{m}{\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]} \underset{\downarrow}{ }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{gathered}
A^{\top} \rightarrow\left[\begin{array}{lll}
c_{11} & c_{21} & c_{31} \\
c_{12} & c_{22} & c_{32}
\end{array}\right] \\
\\
\downarrow \\
\downarrow
\end{gathered}
$$

Observe that :

$$
\frac{\overline{c_{11}} c_{21} c_{31}}{c_{12}} \cdot c_{22} c_{32} \cdot \overline{y_{1} y_{2} y_{3}} \overline{y_{1} y_{2} y_{3}}
$$

$\therefore N\left(A^{\top}\right) \perp \quad$ and $N(A) \perp$
Θ How large is $N\left(A^{\top}\right)$?

T/F?
Null space of π in vector is vector \bar{j} and \bar{k} contains T/F: Null space of $A^{\top} \wedge \bar{j}$ and \bar{k}

T/F?
Null space of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & j \\ 1 & 1\end{array}\right]=\bar{k}$

- Null space of A^{\top} contains \bar{k}

$T / F ? \quad N(A)$ does not
$T / F ? N\left(A^{\top}\right)$ contains \bar{K}

T/F? $\quad N(A)$ does not exist $T / F ? \quad N\left(A^{\top}\right)=\phi$

$$
A_{6 \times 2}=\left[\begin{array}{cc}
1 & 3 \\
15 & 8 \\
7 & 1 \\
3 & 1 \\
22 & 9 \\
8 & 13
\end{array}\right] \quad T / F ? \quad N(A)=\phi
$$

Now how many dimensions in $N\left(A^{\top}\right)$?

$$
A^{\top} \equiv\left[\begin{array}{cccccc}
1 & 15 & 7 & 3 & 22 & 8 \\
3 & 8 & 1 & 1 & 9 & 13
\end{array}\right]
$$

Thing of Tim an
\leftrightarrow Generalize
($A_{m \times n}$)
\leftrightarrow Intuition: Think of $N\left(A^{\top}\right)$ as

Think of $N(A)$ as the

- Add m-dimensional cols. one by one to fill out as unuch space

$$
\longrightarrow\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]\left[\begin{array}{l}
1 \\
7 \\
7 \\
3 \\
8 \\
9 \\
4 \\
5
\end{array}\right] \longrightarrow\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

Question: How many soln.s possible to $A \bar{x}=\bar{b}$, and what dim. is $N(A)$?

(b)

$$
\left[\operatorname{Tim}_{m}\right]_{\operatorname{matix}}^{n} \quad \begin{aligned}
& \text { Rank }=w<m \\
& \text { Fall col. rank }
\end{aligned}
$$

(c) $\left[\begin{array}{c}\text { fat } \\ \text { matrix }\end{array}\right]^{n}$

Rank $=m<n$ Full vow rank

To see this, them This matrix to a
(d)

$$
[\text { Matrix }]
$$

Rank < w, Rank < w
Rank deficient matrix
Θ Basis: Linearly Independent
Θ Dimensions $=$ $=\mid$ Basis \mid
A space cav have
Q: $\quad \operatorname{din}(C(A))=$?
Θ Ormogonal vectors:
Q: wall and floor orthogonal?
Θ Norm : $\left[\begin{array}{l}1 \\ v_{1} \\ 1\end{array}\right] \longrightarrow$ scalar $\Rightarrow \mathbb{R}^{m} \rightarrow \mathbb{R}$
Θ Length $=L_{2}$ norm $=$
ΘL_{0} norw s $=\#$ of
$\Theta \quad u v^{\top}=$
Θ Symmetric matrix \equiv
$\Theta(A B)^{-1}=$ and $(A B)^{\top}=$
$\Theta \quad A^{\top} A$ is a

