Linear Algebra #2

A
$$\bar{x} = \bar{b}$$
: when is this solvable? need to hold.
() \bar{b} has to
() \bar{b} form columns of A.
() \bar{b} has to
() \bar{b} form columns of A.

How large is N(AT) ? Θ

T/F? N(A) does not exist $T/F? N(A^{T}) = \phi$

$$A_{6\times2} = \begin{bmatrix} 1 & 3 \\ 15 & 8 \\ 7 & 1 \\ 3 & 1 \\ 22 & 9 \\ 8 & 13 \end{bmatrix} T/F ? N(A) = \phi$$

$$N_{0} = \frac{1}{22} + \frac{1}{22}$$

Think of This as

() Intruition : Think of N(AT) as

Think of N(A) as the

- Add m-dimensional cols. One by one to fin out as much space

Butstion: How many colt is possible to
$$A\bar{x} = \bar{b}$$
, and what due is $N(A)$?
(4) $\begin{bmatrix} symm \\ work \\ \\ w \end{bmatrix}^{N}$ Rank $= m = m$
Full round
(5) $\begin{bmatrix} thin \\ watrix \end{bmatrix}^{N}$ Rank $= m < m$
Full vol. rank
(6) $\begin{bmatrix} fat \\ matrix \end{bmatrix}^{N}$ Round $= m < m$
(7) $\begin{bmatrix} fat \\ matrix \end{bmatrix}^{N}$ Round $= m < m$
To see this, turn This
Matrix to a
(9) $\begin{bmatrix} Matrix \\ Matrix \end{bmatrix}$ Rank $\leq m$, Rank $\leq m$
Rank $\leq m$, Rank $\leq m$