$$
\text { ESE /CS } 434
$$

Linear Algebra Basics

ECE/CS 434 : Lin Alg. : Lecture 1
\rightarrow Vector Spaces:
Notion of space :

Possible to reach any point in the \mathbb{R}^{2} space by

Informally: everything you can make by combining a giver set of building blocks and rules.
(5) Matrix $A=[\square$
(-) Column space: All possible vectors mat can be formed by

$$
A \bar{x}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} \\
1 & \mid & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

$$
\begin{aligned}
& A \bar{x}=\bar{b} \\
& \bar{b} \in \mathbb{R} \\
& c(A) \in \mathbb{R}
\end{aligned}
$$

$A \bar{x}=\bar{b} \in$ col. space is the union of
Θ Row space: All possible vectors mat caw be formed by a weighted combination of A's

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{l}
-r_{1}- \\
-r_{2}- \\
-r_{3}
\end{array}\right]=
$$

Example: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right] \Rightarrow \begin{aligned} & r_{1}= \\ & r_{2}=\end{aligned}$

$$
\bar{X}^{\top} A=\bar{b}^{\top} \in \text { row space of } A=\text { union of }
$$

Question: Is $R(A)$ and $C(A)$ identical for

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

Θ Vector space: set of an vectors W that satisfies 3 conditions

Question: space or not?
(I) 2D plane ?
(2) One quadrant?
(3) dine $x=y$?
(4) Zero vector?
Θ Popular matrix equation: $A \bar{x}=b$

$$
\left[\begin{array}{cccc}
1 & 1 & & 1 \\
c_{1} & c_{2} & \cdots & 1 \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{w}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{w}
\end{array}\right]
$$

\rightarrow How do you solve this?

- Somehow make A
- Get to a form like
- Ganss-Jordan : $\bar{x}=A^{-1} \bar{b}$
- How do you get A^{-1} ?

$$
\left[\begin{array}{l|lll}
A & 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\rightarrow \quad A \bar{x}=\bar{b} \quad:$ when is tins solvable?
(1) \bar{b} has to

No way to
Any $A \bar{x}$
(2) A has to be

There should n't be of getting to \bar{b} from columns of A.

- Matrix is
- Matrix is
- Determinant (A)
$\rightarrow \operatorname{Rank}(A)=$ No. of

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} \\
1 & 1 & 1
\end{array}\right] \Rightarrow \text { Linearly }
$$

$$
\Rightarrow
$$

If dependent, $\overline{\text { new }}$

$$
w_{1} c_{1}+w_{2} c_{2}=
$$

means \bar{C}_{3} can be expressed as
Θ Nne space : $\{\bar{x}: \quad\} \equiv$ space of an

$$
N(A)
$$

Θ shape of mill space:

$$
M \begin{array}{cc}
{\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{4} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]^{n}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lll}
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{lll}
c_{11} & c_{21} & c_{31} \\
c_{12} & c_{22} & c_{32}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Observe That :

$$
\frac{\overline{c_{11}} c_{21} c_{31}}{c_{12} c_{22} c_{32}} \cdot \frac{\overline{y_{1} y_{2} y_{3}}}{\overline{y_{1}} y_{2} y_{3}}
$$

$\therefore N\left(A^{\top}\right) \perp$ and $N(A) \perp$

