Beamforming and Angle of Arrival (AoA)
$\Theta$ Omnidirectional antennas: radiate signals equally in all directions Directional antennas: Direct the radiation more in certain directions and less in others.

$\Theta$ creating such mon-circular radiation pañerns $\Rightarrow$ Beamforming $\rightarrow$ Spatial How?
$\Theta$ Let's consider an ARRAY of omni-directional antennas (or even microphones)


Linear antenna array
Circular mic. array (Alexa)
$\leftrightarrow$ say, these antennas transmit an at the same time?
$\longrightarrow$ what signals win you receive from different locations?
$\rightarrow$ consider nearby locations first:
$\rightarrow$ The aggregate signals at these nearby locations vary based on the location.
$\rightarrow$ No pattern is visible as you move.
$\longrightarrow$ This is caned "NEAR FIELD".

$\Theta$ Now, consider locations That are far awry
$\rightarrow$ whew distance from antennas to location $L$ becomes $>$ man seperation ' $d$ ' between the antennas, thew the signal paths almost become PARALLEL
$\rightarrow$ called "FAR FIELD" $d \ll r$
$\rightarrow$ Let's analyze for field effects
$\Theta$


- All antennas transunit
- Say $R_{x}$ receives $s_{0}(t)$ from antenna $a_{0} \ldots$ and $s_{i}(t)$ from antenna $a_{i}$
- Received signal $y(t)$

$$
y(t)=
$$

(5) Now, assume (wo echo or unltipaiñ).
$\rightarrow$ Thew what is the difference between $s_{0}(t)$ and $s_{1}(t)$ ?

Ans:
 $s_{1}(t)$ travels distance Juan

$$
\Downarrow
$$

How much phase shift $\phi$ does this cause?
$\lambda$ distance causes $2 \pi$ phase shift

$$
\therefore \quad d \cos \theta
$$

$$
\Downarrow
$$

How caw we mainematically write that $s_{1}(t)=s_{0}(t)$ phase shifted by $\phi=\frac{2 \pi}{\lambda} d \cos \theta$ $\longmapsto$ Recall

Thus:

$$
\begin{aligned}
s_{0}(t)=\cos \left(2 \pi f_{1} t\right) \quad & s_{1}(t)= \\
& \therefore s_{1}(f)=
\end{aligned}
$$


$\Theta P$ lot $Y_{f}$ or $y_{t}$ against $\theta$



$\Theta$ So the beams look like:
$\Theta$ Observe, the natural beam is pointing towards
$\Theta$ Beam Rotation
Now I want the main lobe to point towards
$\rightarrow$ ie., towards $\theta$.
$\rightarrow$ How? By making signals from all antennas
So, first let's see wow signals add up along $\theta$
Recall $Y=$
This is like

$\oplus$ For max $S N R$ at $R_{x}$,
ie.,

$$
\begin{array}{lllll}
Y & P & P & x_{x_{0}} & x_{0}^{-j \phi} \\
x_{0} e^{-j 2 \phi} & \cdots & x_{0} e^{-j(N-1) \phi} \\
\end{array}
$$

$\therefore Y=\sum_{K=0}^{N-1}$
$\therefore \quad Y=$
This is called
$\Theta$ Analogy: Stagger runners at the starting line to ensure they all run the same distance
$\Leftrightarrow$ ANGLE OF ARRIVAL (AOA)


Signal arriving from

$$
\begin{array}{ccccc}
a_{0} & a_{1} & Y_{a_{2}} & \cdots & a_{N-1} \\
\end{array}
$$

Antenna array needs to figure ont the

How caw you estimate AOA? Well, similar concepts as beamforming
$\Theta$ Say received signal is now
$\theta$ Frown this received vector, wow do you detect $\theta$ ?
$\rightarrow$ Answer:
$\rightarrow$ Algorithm:

$$
\begin{array}{ll}
\text { for } \theta_{i}= & \text { // search over all } \operatorname{AOA} \theta \\
\left\{\begin{array}{ll}
\{ & \\
\alpha_{i} & = \\
C_{\theta_{i}} & =[
\end{array}\right] \text { calculate phase shift }
\end{array}
$$

\}


$$
A O A=
$$

$\Theta$ Now, let's assume sending in parallel.
$\rightarrow$ can we still decode the ADAs?


$$
Y P Y \not Y
$$

say $\phi_{1}=$

$$
\phi_{2}=
$$


say

$$
\bar{Y}=
$$

$\leftrightarrow$ Now how can you decode
$\rightarrow$ Ansever: Looking for a certain phase pattern $\rightarrow$

$$
\begin{aligned}
& {[ } \\
& J^{*}\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{N-1}
\end{array}\right]=
\end{aligned}
$$

Perform this for all values of Hope dot product large whew
$\Theta$ modelling morse $\bar{Y}=A \bar{S}+$

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{0} \\
Y_{1} \\
\vdots \\
Y_{N-1}
\end{array}\right]=\left[\begin{array}{l}
\quad \\
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{d}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1}+\quad x_{j}+
\end{aligned}
$$

$\left(\right.$ By correlating along all directions $a_{i}$, we get an
$\Theta$ Problem is


$\rightarrow$ Peak is
Especially when signals are

