Bayes' Rule:
Likelihood
Prior

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A, B)}{P(B)}
\end{aligned} \begin{aligned}
\text { Posterior } & =\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
\text { marginalization } & =\frac{P(B \mid A) \cdot P(A)}{\sum_{A} P(B, A)} \\
& =\frac{P(B \mid A) \cdot P(A)}{\sum_{A} P(B \mid A) P(A)}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
P(A, B, C) & =P(A \mid B, C) P(B, C) \\
& =P(A \mid B, C) P(B \mid C) P(C)
\end{aligned}
$$

Random Variables:

Variable x

$$
E[x]=N_{x}=\sum_{i} x_{i} f_{x}\left(x_{i}\right) \quad \operatorname{Vav}(x)=E\left[\left(x-N_{x}\right)^{2}\right]
$$

Joint Distribution

Conditional Distribution

$$
\begin{aligned}
P(X \mid Y)= & \frac{P(X Y)}{P(Y)} \\
& \frac{P\left(X=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right], Y=2\right)}{P(Y=2)} \\
= & \frac{P(X=[], Y=2)}{\sum_{1} P(X=[] Y=2)}
\end{aligned}
$$

- Independence:
X and Y are independent when

$$
\begin{array}{ll}
P(x, y)=P(x) P(y) \quad \text { for all values } \\
\quad \text { of } x, y
\end{array}
$$

Variance and Covariance

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left[\left(x-N_{x}\right)^{2}\right] \\
& =E\left[x^{2}+N_{x}^{2}-2 x \mu_{x}\right] \\
& =E\left[x^{2}\right]+N_{x}^{2}-2 \mu_{x}^{2} \\
& =E\left[x^{2}\right]-2 E[x]^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-N_{X}\right)\left(Y-N_{Y}\right)\right] \\
& =E\left[X Y-X N_{y}-N_{Y} Y+N_{X} N_{Y}\right] \\
& =E[X Y]-E[X] N_{Y}-N_{X} E[Y]+N_{X} N_{Y} \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

When $\operatorname{cov}(x, y)=0$
ie., $E[X Y]=E[X] E[Y]$ called

$$
\begin{aligned}
& \text { Correlation } \\
& \text { coefficient }
\end{aligned}=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Van}(y)}} \in[-1,1]
$$

Meaning of independence and correlation (or uncorrelation) in plain English?

Two RVs X and Y ave uncorrelated. Ave they also independent?

Will 2 independent RUs be always uncorrelated?

Vectors of Random Variable \bar{x}

$$
\xrightarrow{j^{\prime}} \underset{i}{ } \quad \bar{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

\qquad

Expected value of Random Vector $E[\bar{x}]$

$$
E[\bar{X}]=[
$$

- Vector version of variance \rightarrow Covariance matrix

$$
\operatorname{Cov}(\bar{x})=\operatorname{Cov}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\text { Pairwise covariances }
$$

Covariance matrix $\operatorname{Cov}(x)=$

$$
E\left[x x^{\top}\right]=
$$

$$
\operatorname{cov}(\bar{x})=\sum_{1}=
$$

Visualize a $2 D$ jointly Gaussian random variable. where x_{1} and x_{2} are uncowelated and $N(3,1)$ and $N(1,1)$

Interpret 2D data points as a realization of rand. vectors.

$$
\xrightarrow{\sim}
$$

So data points have a model wow \rightarrow helps for analysis

Is the data uncorrelated \longleftarrow

由 为＂\ddagger

Application: covariance of received uric. data.

$$
\begin{aligned}
& \text { i.e., say } x=A \bar{s}+\bar{n} \\
& \operatorname{cov}(x)=E\left[x x^{\top}\right]
\end{aligned}
$$

$$
\begin{aligned}
P(A \mid \text { Red }) & =\frac{P(A, \text { Red })}{P(\text { Red })}=\frac{P(\text { Red } \mid A) P(A)}{P(\text { Red })} \\
& =\frac{\frac{1}{3} \cdot \frac{1}{2}}{P(\text { Red })}=\frac{\frac{1}{6}}{P(\text { Red }, A)+P(\text { Red, } B)} \\
& =\frac{1}{6} \cdot \frac{1}{P(\text { Red } \mid A) P(A)+P(\text { Red } \mid B) P(B)} \\
& =\frac{1}{6} \cdot \frac{1}{\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{2}} \\
& =\frac{1}{6} \cdot \frac{1}{\frac{1}{6}+\frac{1}{3}}=\frac{1}{6} \cdot \frac{1}{6} \\
& =\frac{1}{6} \cdot \frac{2}{2}=\frac{1}{3}
\end{aligned}
$$

Likeliluood is self evident (given hypothesis, you $\rightarrow P($ article $\mid C N N)$ know the chance of the evidence)
Posterior requires yow to know wore about other hypothesis (given evidence, you need to $\rightarrow P(C N N \mid$ article $)$ understand how the evidence velates to other hypothesis)

