Source separation

Source separation

Source separation

Source separation: The general problem statement

Source separation: The general problem statement

$$X_{1} = a_{1}S_{1} + b_{1}S_{2}$$

$$= \begin{bmatrix} a_{1} & b_{1} \end{bmatrix} \begin{bmatrix} s_{1} \\ S_{2} \end{bmatrix} - \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix}$$

$$X_{1} = a_{1}S_{1} + b_{1}S_{2}$$

$$X_{2} = a_{2}S_{1} + b_{2}S_{2}$$

$$X_{3} = a_{1}S_{1} + b_{1}S_{2}$$

$$X_{4} = a_{2}S_{1} + b_{2}S_{2}$$

$$X_{5} = \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix}$$

$$X_{5} = \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix}$$

$$X_{5} = A_{5}$$
Mixing matrix

Unknown mixing matrix, unknown source signals \rightarrow heavily under-determined

Source separation: The general problem statement

Hard to separate the sources even visually

When can we solve SS?

Let's make some simplifications: Mixing matrix is known based on **Angle of Arrival (AOA)**

- What is angle of arrival (AoA)? How do you quantify it?
- Relation between AoA and FFT
- How do you get AoA? From camera or from audio itself?
- How to solve X = A S + N even when A is known

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?

X = A.S + N

But what if AoA unknown? **It's hard to solve for S** ... **but what if S is speech signals?**When the source signal is speech, exploit TF-disjointness

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?

When the source signal is speech, exploit TF-disjointness

But what if AoA unknown? It's hard to solve for S ... but what if S is speech signals?

When the source signal is speech, exploit TF-disjointness

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & \\ \vec{a}_{\theta_1} & \vec{a}_{\theta_2} \\ \end{vmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$
AoA matrix A

$$X = A.S + N$$

Reverberation

$$\times = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a_{0} & a_{0} & a_{0} & a_{0} \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{1} \\ s_{2} \\ s_{2} \end{bmatrix}$$

DUET Algorithm Steps:

- 1. Take STFT of both mics
- 2. Divide STFT, by STFTZ,
- 3. Cluster along $\Delta \phi_{TF} \Rightarrow should$
- 4. Assign each TF bin to the clusters
 - Take TF bins belonging to the same cluster and take the IFFT to reconstruct source signal.

gives phase shift $\Delta \phi$ for each TF bin

see 2 clusters

assuming low hoise, ADA's not too close, low reverb.

$$\frac{\partial \phi}{\partial t} = f(\theta)$$

$$\frac{\partial \phi}{\partial t} = f(\theta)$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t}$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial$$